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Abstract 
In the near future climate change is expected to increase the severity of droughts in 
semi-arid regions. Moreover rainy seasons are expected to become shorter and 
more intense. Subsequently, water stress will increase, as inhabitants are dependent 
on rain-fed agriculture. Recent examples of increased water stress are the droughts 
in the Horn of Africa. Water harvesting is showing a potential adaptation measure to 
cope with the expected increase in water stress. In Kitui, Kenya water harvesting 
systems like sand dams, cisterns and open ponds are used to harvest water. Little is 
known about the influence of evaporation on these water harvesting systems. In this 
research sixteen methods of evaporation are compared with the residual of the 
energy balance and six methods are analyzed for their influence of modeled water 
harvesting systems (i.e. open pond and sand dam). The Priesley-Taylor method 
shows the best results (r2 of 0.99, Nash-Sutcliffe efficiency of 0.78). Other methods 
showing agreeable results are Granger-Gray, Morton’s CRAE, Brutsaert-Strickler, 
Penman-Monteith and Bowen Ratio Energy Balance. Six analyzed evaporation 
methods for modeled water storage show a deviation ranging between of -24 to 10 % 
and -27 to 8 % of evaporative fracture for open pond and sand dam respectively. The 
deviation of evaporative fracture equals up to 3.5 and 2.5 % of total water harvested, 
in open pond and sand dam respectively, for the analyzed period. The influence of 
the evaporation and selected evaporation methods, hence seem less important than 
other fluxes when looking into water harvesting systems. 
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1 Introduction 
Threats to water availability, demand and pollution are a worldwide problem, making 
water security and its indicators a much-discussed topic in scientific research. About 
80% of the global population is suffering from these water security-related problems 
(Vörösmarty et al., 2010). Due to climate change, water security is projected to be 
stressed even more wherein the freshwater resources of semi-arid and arid regions 
are particularly exposed (Jiménez, 2014). Of the global population 35.5 % lives in all 
dry lands and about 14.4 % of the world’s inhabitants in semi-arid regions (EMG, 
2011). As consequence of dry seasons, the inhabitants in semi-arid regions already 
have to cope with periods of water scarcity. According to the IPCC (2012), global 
change is expected to increase the severity of droughts, intensify precipitation during 
a period of rainfall and wet seasons are expected to become shorter in semi-arid 
regions. Recent examples of extensive drought periods in semi-arid regions are 
found in the Horn of Africa (Nicholson, 2013), wherein millions of people suffer the 
consequences of food shortages due to crop failure.1 Taking climate change into 
account, the frequency of water shortage will increase in the near future in semi-arid 
regions, making the need to grasp for solution to this worldwide problem even more. 
 

To supply water to habitants in semi-arid regions during dry seasons, 
precipitation during wet seasons need to be stored with shorter and more intensive 
periods of rainfall. According to Lasage et al. (2008), sand dams are a successful 
adaption to cope with the expected increase in severity of droughts. This is in 
agreement with other studies (Quilis et al., 2009; Olufayo et al., 2009). A sand dam is 
a subsurface water storage system in which water flowing from an ephemeral river 
can be stored in the sandy sediments before the dam. The dam itself is a simple 
barrier in the drainage channel in which the sand dam regulates the water levels in 
the river sands as well as the surrounding area (Munywoki et al., 2004). Subsurface 
storage strongly reduces evaporation and contamination (Hut, 2008). SASOL, a local 
NGO in Kenya, constructed more than 700 sand dams serving more than 150.000 
people in the Kitui County, showing the potential of this water harvesting structure 
and increasing the water availability in this semi-arid region (Munywoki et al., 2004). 
There are also other ways to store water, like an open pond and a water tank. An 
open pond is a simple form of surface storage in which the water is fully exposed to 
contamination and evaporation. While an open pond is described as an open system, 
a water tank is a closed system, which is fed by the runoff of rainwater from a 
catchment or rooftop. The performance of these water harvesting systems (WHS) is 
among others assessed by Lasage & Verburg (2015), Ngigi (2003) and politically 
addressed by Ertsen & Hut (2009).  

 
Fluxes of rainfall, runoff and evaporation influences the water storage and related 

costs and benefits of the sand dams and other WHS. Little is known of the water 
losses due to evaporation on the performance of a sand dam and other WHS during 
                                                
1 http://www.fao.org/news/story/en/item/468941/icode/ (retrieved: 28-06-2017) 
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and after periods of rainfall. Recent studies argue that evaporation will not occur 
below 0.9 m beneath surface in sandy semi-arid areas with losses around 3 or 4 % of 
the total inflow (Love et al., 2011). Furthermore, Aerts et al. (2007) argues 
decreasing rates of evaporation with depth in a sandy soil. There are several 
methods of approaching evaporation, ranging from temperature-based techniques to 
highly complex methods including several meteorological factors. Selecting different 
methods of approaching evaporation will result in different outcomes of the modeled 
water storage. According to Allen et al. (1998), the more complex FAO Penman-
Monteith is the recommended method of calculating evaporation. Best model 
prediction of Penman-Monteith and adaptions of the equation where found by Tanny 
et al. (2008) when comparing with open pan evaporation and are thus in agreement 
with Allen et al. (2008). While Szilagyi & Jozsa (2008) argue that aridity advection 
and complementary evaporation methods are better equipped when dealing with 
drought conditions. Next to the complex methods there are also methods that include 
a few meteorological parameters or even only temperature. While the more complex 
methods are often recommended, due to practical constraints the more simple 
methods are also often used. McMahoon et al. (2013) and Guo et al. (2016) made 
guides to calculate evaporation using various methods, wherein the former included 
a statistical overview of the various methods related to lysimeters, eddy covariance 
or other evaporation methods. Furthermore, Rosenberry et al. (2007) compared 15 
evaporation methods. In this research various evaporation methods will be assessed 
and tested for their statistical differences. Subsequently, a sensitivity analysis of the 
various evaporation methods on water harvesting will be implemented. The main 
question of this research is:  

What is the sensitivity of water harvesting systems for evaporation, considering 
multiple methods approaching evaporation rates? 

 
In order to answer the main question, the impact of evaporation methods, ranging 

from simple to complex, on the performance of two water harvesting systems is 
assessed, using field data gathered in Kitui, Kenya and a water storage model. 
Chapter 2 gives a general overview of the study area Kitui, chapter 3 describes the 
methods used and chapter 4 elaborates on the results. The discussion is described 
in chapter 5 and lastly, chapter 6 concludes. 
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2 Study area 

2.1 General overview of the Kitui District 
The Kitui County is a semi-arid region located in Eastern Kenya. Kitui counts 
approximately 500 thousand inhabitants with an annual population growth rate of 2.6 
% and a total land area of approximately 20,000 square kilometers. The altitude 
varies between 400 m and 1800 m above sea level and due to these local 
differences in height annual rainfall ranges from 500 mm to 1000 mm. Kitui is 
depicted in Figure 1, where elevation maps are shown of Kenya and Kitui county. 
South Eastern Kenya University (SEKU) and Nyumbani village are also shown, as 
these places are included in the research area. 
 

 
Figure 1: Elevation map of Kenya (left) and Kitui (right), where Nyumbani village and South 
Eastern Kenya University (SEKU) are indicated. 

Rainfall mostly falls in two wet seasons spanning a couple of months per year. 
The first wet season is called ‘the long rains’ and falls between late March and early 
June. The second wet season is the so-called ‘short rains’ and falls between late 
Octobers throughout November. The long rains are highly erratic and reliable while 
the short rains are more consistent. Based on historical rainfall data from the KNMI 
climate explorer, a weather station in Kitui measured 990 mm rainfall per year on 
average. The first wet season contributes 468 mm on average and the second wet 
season 517 mm of rainfall. As shown in Figure 2, most of the rain falls in April and 
November with average amounts of 228 and 300 mm respectively. Figure 3 depicts 
the sum of rainfall per wet season with standardized anomalies based on historical 
rainfall data obtained from KNMI climate explorer. The figure clearly shows the large 
deviations in rainfall per year with the lowest point a standardized anomaly of -3 and 
217 mm of rainfall in 1983. The highest point is reached in 1968 with standardized 
anomaly of 3 and close to 1800 mm of rainfall. The amount of rainfall is of great 
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importance for the inhabitants as their water supply and agriculture is mostly 
dependent on the rainfall. The mean temperature per year is 21 ºC and the potential 
evaporation is approximately 1500 to 1600 mm per year (Lasage et al., 2008).  

 
Figure 2: Mean monthly rainfall and temperature in Kitui, Kenya for the period 1904-1990 
(Source: KNMI Climate Explorer and climate-data.org). 

 
Figure 3: Historical rainfall data for the first and second wet season for the period 1904-1990 
with standardized anomalies on top (Source: KNMI climate explorer). 

2.2 Vegetation in Kitui 
The Kitui County mostly consists of savannas and drought deciduous woodlands. 
Variety of vegetation and species distribution in the semi-arid region depends on 
topographical features as valley, slope or hillside (Tanaka et al., 2000). The most 
dominant tree species are the Lannea triphylla and Commiphora Africana. The 
Acacia tree species has become valuable and scarce due to usefulness of firewood 
and timber (Hayashi, 1996). Natural grasses and shrubs of lantana camara and other 
species are abundant in the area (Munywoki et al., 2004). Figure 4 depicts the 
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vegetation in the study area at the end of November 2016. After some rainfall, natural 
grasses are starting to grow on the otherwise dry soil. 
 

 
Figure 4: Vegetation in the study area at SEKU ground. 

2.3 Water availability, local facilities and economy of Kitui 
According to the KNBS (2013), 60 % of the district of Kitui was beneath the country’s 
poverty line, making it one of the poorest regions of Kenya. Although the main source 
of income of 80 % of the population is rain fed agriculture, only 2 % of the area has 
high agricultural potential and 32 % of medium potential (KNBS, 2015). Irrigated 
agriculture only takes place on small plots on the riverbank and in 2004/2005 
approximately 50 % of the population in Kitui received food aid. Other sources of 
income are charcoal burning, brick making and basket breading (Lasage et al., 
2008). Water availability is scarce in the region and only 6 % of the population of Kitui 
has access to potable water, leaving inhabitants to walk up to 20 kilometers for clean 
water. Furthermore, only 45 % of the population has access to water for domestic 
use while fewer have access to water that is fit to drink (Lasage et al., 2008). An 
alternative natural water source for many inhabitants in rural Kenya is water storage 
with rooftop harvesting or scooping holes in sediments of rivers in order to reach the 
groundwater. Inhabitants that are relying on rain fed water storage have to cope with 
declining and depleting water levels at the end of the dry seasons. In Figure 5 a 
scoop-hole is depicted at the end of a dry season leaving inhabitant to dig a couple of 
meters in order to reach the depleting source of water. 
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Figure 5: Scoping hole at the end of the dry season in October 2016. 

2.4 Hydrology and sand dams in Kitui 
Kitui counts two perennial rivers. The Tana River is located at the north boundary of 
the region and the Athi River at the southwestern boundary. Both rivers discharge to 
the Indian Ocean and most of the Kitui district consists of the catchment area of the 
Tana River. During rainy seasons, precipitation-fed ephemeral rivers start flowing in 
the region. These temporarily flowing rivers are for most of the inhabitants in the 
region more important. Erratic rainfall patterns in combination with poor drainage of 
the abundant clayey soils in Kitui results in a scarcity of surface water and 
groundwater resources (Pauw et al., 2008). The Sahelian Solution Foundation 
(SASOL), a local NGO founded in 1992, together with local communities in Kitui has 
set up a rural water conservation program and constructed over 700 sand dams 
attempting to tackle the water scarcity of the dry periods in the region. A sand dam is 
a simple concrete dam placed in a drainage channel in which water is forced to 
infiltrate the river sediment and can be used as storage for later uses. The sandy 
sediment of the river helps purify the infiltrating water and eliminates most of the 
evaporation. Reaching the water is normally done with a pump, but inhabitants also 
make use of scoop holes. 

 
Figure 6: Sand dam at Nyumbani village in Kitui county. 
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3 Methods 
Meteorological input is needed in order to calculate water storage and different 
methods of evaporation. In Kitui, Kenya an automatic weather station (AWS) has 
been set up and installed in order to measure different meteorological factors. The 
raw input of the AWS has been processed to daily climate data and other 
meteorological factors, not included in the measurements, are calculated with the 
processed data. Daily climatological data has been obtained for the period 7th of 
October 2016 until 21st of December 2016, 7th of April 2017 until 19th of April 2017, 
and 18th of May 2017 until 22nd of May 2017, with a gap of 25th and 26th of October 
2016. The small and large gaps are due to measurement failure. In total 90 days of 
daily climate data is obtained. Equation 1 depicts the direct forcings of the energy 
balance. Taking the evaporation term as residual has closed the energy balance. 
This has been used as reference point for statistical analysis for the different 
evaporation methods, which are assessed in this research. The results of calculating 
evaporation using these different methods have been used as input for a water 
storage model to obtain a sensitivity of water storage to the different methods of 
evaporation. Calculations have been made based on two WHS and the results are 
statistically analyzed in order to validate if the evaporation methods differ 
significantly. Figure 7 gives a schematic overview of the methods section and the 
sections in which they are elaborated. The Python scripts used for the models and 
processing of the data can be found in the appendix. 

 
Figure 7: Schematic overview of the methods used. (Meteorological factors: e.g. latent heat of 
vaporization, actual and saturation vapor pressure, and aerodynamic resistance). 

3.1 Processing data 
The studies of calculating evaporation using various methods are highly discussed 
topics in scientific research (McMahon et al., 2013; Guo et al., 2016; Rosenberry et 
al., 2007). In these studies experimental designs and theoretical equations are set up 
to calculate reference crop, potential and actual evaporation. Most of the evaporation 
methods are based on the energy balance (McMahoon et al., 2013; Tanny et al., 
2007). The energy balance is depicted in Equation 1 and is the general form of the 
energy budget in terms of a flux: 
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 𝑅! − 𝜆𝐸 − 𝐻 − 𝐺 = 0 (1) 
 
where 𝑅! is the specific flux of net incoming radiation, 𝜆𝐸 the latent heat flux, 𝐻 the 
specific flux of sensible heat into the atmosphere, and 𝐺 the specific flux of heat 
conducted into the earth (Brutsaert, 2013; Allen et al., 1998). The latter can be 
assumed to be zero when dealing with daily time steps (Allen et al., 1998). The AWS 
measures meteorological factors needed to calculate evaporation and other terms of 
the energy balance summarized in Table 1. Some meteorological factors are not 
directly measured with the AWS, but can be calculated using measured data (e.g. 
vapor pressure and aerodynamic resistance). Closing the balance and dividing the 
latent heat flux by the latent heat of vaporization allows one to calculate the 
evaporation as residual in mm day-1. Figure 8 gives an overview of influencing 
factors of Equation 1. According to Guo et al. (2016), the term water advected energy 
only applies for open-water bodies and can be neglected for this research. Radiation, 
ground heat exchange and sensible heat flux are depicted within the energy balance 
box and both influence evaporation. Resistances, vapor gradient and wind moreover 
influence Mass transfer of water vapor. 

 
Figure 8: Overview of important forcings of evaporation (Adopted from: Guo et al., 2016). 

3.1.1 Measuring meteorological factors 
An AWS has been set up to log a continuous series of measurements of 
meteorological factors in the study area. At the core of the station a CR1000 data 
logger is installed and connected to the various devices that measures the factors. 
The AWS is attached to a solar panel in order to provide a power supply and keep 
the data logger operational. Every five seconds a measurement is done by the 
attached instrument and every 15 minutes data is logged in the system. In most 
cases the measurement logged is the average of the previous 15 minutes. For 
rainfall the measurements are summed. Table 1 summarizes the instruments used 
and their specifications. 
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Table 1: Summary of the measuring instruments 

Component Instrument Units Accuracy Resolution Height 

Rainfall Campbell Scientific 
ARG100 Rain Collector mm ±2 % up to 

50 mm hr-1 0.1 mm 1 m 

Air 
temperature 

Vaisala HMP45C 
Temperature and 
Relative Humidity 

Probe 

ºC ±0.2 °C 0.1 °C 1.25 m and 
2 m 

Relative 
humidity 

Vaisala HMP45C 
Temperature and 
Relative Humidity 

Probe 

% ±2 % 0.10 % 1.25 m and 
2 m 

Solar 
radiation 

Skye SKS1110 
Pyranometer W m-2 < ±0.2 % 0.1 W m-2 1.5 m 

Net radiation Kipp & Zonnen NR-
LITE 2 Net radiometer W m-2 

< ±3 % (at 
1000 W m-

2) 
0.1 W m-2 1.5 m 

Wind speed DS-2 Sonic 
Anenometer m s-1 ±3 % 0.01 m s-1 2.25 m 

Soil 
temperature 

Campbell Scientific 107 
Temperature Probe ºC ±0.2 °C 0.1 °C 0.05 m 

depth 

Soil heat flux 
Campbell Scientific 

Hukseflux HFP01 Heat 
Flux Plate 

W m-2 Within -15 
% to +5 % 0.1 W m-2 0.05 m 

depth 

Soil water 
content 

Campbell Scientific 
CS616 Water Content 

Reflectometers 
% ±2.5 % 0.10% 

0.05 and 
0.10 m 
depth 

 
The AWS has been set up to meet the WMO specifications (Jarraud, 2008). A 

rain gauge tipping bucket measures rainfall in mm at a height of 1 m. As depicted in 
Figure 9 there are two temperature and relative humidity instruments at the height of 
1.25 m and 1.75 m, which agrees with the WMO standard between 1.25-2.00 m. At 
1.5 m height an arm is perpendicularly attached to the main pole and carries two 
radiation instruments. Due to potential influences of the main pole, the arm is 1 m 
long. At the end of the arm the net radiometer is attached and in the middle the solar 
radiometer. There are two plots in which measurements are done, i.e. the soil plot 
and sand dam sediment plot. The latter plot contains a soil temperature probe, soil 
water content reflectometer and a soil heat flux all placed at a depth of 0.05 m. The 
soil plot contains the same but with a second soil water content reflectometer at the 
depth of 0.1 m. More information about the devices used is found in the appendix. 
The location, field equipment and description of the automatic weather station are 
depicted in Figure 9. 
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Figure 9: Field equipment and surroundings of the automatic weather station at SEKU ground. 
The following devices and plots are numbered; data logger (1), rain gauge (2), temperature and 
humidity device (3 & 4), solar radiation meter (5), net radiation meter (6), wind speed and 
direction on top of the pole (7), solar panel on top of dark gray pole behind arm of net radiation 
meter (8), soil plot (9), and sand dam sediment plot (10). 

3.1.2 Processing climate data 
The 15-minute intervals between the measurements are processed to daily data, 
where the measurement day starts at 08:00. For the factors wind speed, solar 
radiation, net radiation, soil water content and soil heat flux the daily averages are 
calculated. Temperature and humidity are processed to daily data by summing the 
daily maximum and minimum divided by 2. Precipitation measurements are summed 
to daily data. Because most of the evaporation techniques require radiation in MJ m-

2, the solar, net radiation and soil heat flux are converted from W m-2 to MJ m-2. When 
measurements fail, the days that possess gaps are discarded and, furthermore, 
measurements with NaN are replaced by daily mean, maximum or minimum. The 
photoperiod hours per day and extraterrestrial radiation has been calculated by the 
following set of equations: 
 
 𝑑! = 1 + 0.033 cos 2 𝐽 𝜋 365  (2) 
 𝛿 = 0.409 sin 2 𝐽 𝜋 365 − 1.39  (3) 
 φ = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝜋 180 (4) 
 𝜔 = cos!! tan𝜙 tan 𝛿  (5) 
 𝐿 = 24𝜔 𝜋 (6) 
 
, where 𝐽 is the Julian day and number of the day of the year, 𝑑! the inverse relative 
distance Earth-Sun, 𝛿 is the sun declination, φ the latitude in radians and 𝜔 is the 
hour angle at sunrise or sunset (Allen et al, 1998; Iqbal, 2012; Guo et al., 2016). The 
hours per day, 𝐿, is needed as input in order to calculate an evaporation models 
specified in section 3.2. The set of Equations 2 to 6 is hereafter referred to as the 



 
11 

sunrise equation. With the sunrise equation, the extraterrestrial radiation can be 
calculated by filling in the following equation: 
 
 

𝑅! =
24 60
𝜋

𝐺!"𝑑! 𝜔 sin 𝜑  sin 𝛿 + cos 𝜑 cos 𝛿 sin 𝜔  (7) 

 
, where 𝐺!"  is the solar constant and 𝑅!  the extraterrestrial radiation in MJ day-1 
(Allen et al, 1998). Due to measurement failure of net radiation during the period of 
measuring in 2017, the net radiation is estimated by filling in the set of equations 8 to 
11. 
 
 𝑅!" = 0.75 + 2(10!!)𝑧 𝑅! (8) 
 𝑅!" = 1−∝ 𝑅! (9) 
 

𝑅!" = 𝜎
𝑇!"#,!! + 𝑇!"#,!!

2
0.34 − 0.14 𝑒! 1.35

𝑅!
𝑅!"

− 0.35  (10) 

 𝑅! = 𝑅!" − 𝑅!" (11) 
 
, where 𝑅!" is the clear-sky solar radiation, 𝑅!" is the net solar or net shortwave 
radiation, ∝ is the albedo of the study area, 𝑅! is the measured solar radiation, 𝑅!" is 
the net longwave radiation, 𝑒! is the actual vapor pressure described in the next 
section and 𝑅!  the net radiation (Allen et al., 1998). 𝑇!"#,!  and 𝑇!"#,!  are the 
maximum and minimum temperature of the day in Kelvin degrees and the average 
albedo is computed, for the period where net radiation measures are available, by 
taking it as the residual and filling in the set of equation. An average value of 0.39 is 
estimated. 

3.1.3 Calculating meteorological factors 
Next to the measured meteorological factors, other factors are used for calculating 
evaporation using different methods. Resistances and vapor pressures are examples 
of such influencing factors on evaporation. This section describes the often-used 
factors as input for evaporation not measured, but calculated with constants and 
measured fluxes. An overview of all the measured and calculated factors required as 
input for the evaporation model is shown in the Figure 10. 
 

 
Figure 10: Overview of the measured meteorological factors (blue) and calculated 
meteorological factors (red). The green arrows depict the flow of input. 
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Wind speed is an important factor in meteorology and influences the evaporation rate 
by altering the aerodynamic resistance. At the surface wind speed is slowest and 
increases with height. Due to these differences in wind speed at different heights, a 
standard height of 2 m is required in order to calculate evaporation (Allen et al., 
1998). To adjust wind speed data from the measured 3.25 m height to 2 m height, 
the following equation is used: 
 
 𝑈! = 𝑈!

4.87
ln 67.8𝑧 − 5.42

 (12) 

 
, where 𝑧 and 𝑈! is the wind speed measured height and measurements respectively 
(Allen et al., 1998). With wind speed data at a height of 2 m, the aerodynamic 
resistance factor can be calculated with equation 13. 
 
 

𝑟! =
𝑙𝑛 𝑧! − 𝑑

𝑧!"
𝑙𝑛 𝑧! − 𝑑

𝑧!!
𝑘!𝑈!

 (13) 

 
, where 𝑧! and 𝑧! are the height of wind speed and relative humidity measurements 
respectively, 𝑑 is the zero plane displacement height, 𝑧!" and 𝑧!! are the roughness 
length governing momentum transfer and transfer of heat and vapor respectively, 
and 𝑘 the von Karman’s constant. The aerodynamic resistance 𝑟! is the resistance to 
transfer of heat and water vapor from the surface into the air above the surface and 
is expressed in s m-1 (Allen et al., 1998). Next to the aerodynamic resistance there is 
also surface resistance and is approximated by the following equation: 
 
 𝑟! =

𝑟!
𝐿𝐴𝐼

 (14) 

 
, where 𝑟! is the bulk surface resistance of the leaf and 𝐿𝐴𝐼 the leaf area index. The 
bulk surface resistance is for the grass reference surface is approximated to 70 s m-1 
(Allen et al., 1998). The temperature dew point is calculated with the following 
equation: 
 
 

𝑇! = 𝑇! 1 −
𝑇! ln

𝑅𝐻
100

𝑒! 𝑅!

!!

− 273.15 (15) 

 
, where 𝑻𝑲 is the temperature in Kelvin degrees, 𝑅𝐻 is the relative humidity, 𝑒! is the 
enthalpy of vaporization, and 𝑅!  is the gas constant for water vapor (Lawrence, 
2005). The latent heat of vaporization is calculated using equation 16: 
 
 𝜆 = 2.501 − 2.361×10!! 𝑇! (16) 
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, where 𝑇! is temperature in degrees Kelvin and 𝜆 the latent heat of vaporization in 
MJ kg-2 (Allen et al., 1998). With the latent heat of vaporization, the psychrometric 
constant can be computed with the following calculation: 
 
 𝛾 =

𝑐!𝑃
𝜀𝜆

 (17) 

 
, where 𝑐! is the specific heat at constant pressure, 𝑃 is the atmospheric pressure, 𝜀 
is the ratio molecular weight of water vapor and dry air and 𝛾 the psychrometric 
constant in kPaºC-1. As shown in Figure 10, the Teten’s equation is an important 
factor and allows calculations of saturation, actual and equilibrium vapor pressure. 
The saturation vapor pressure at a specific temperature can be calculated with the 
Teten’s equation: 
 
 

𝑒° 𝑇 = 0.6108𝑒
!".!"!!
!!!!"#.!  (18) 

 
𝑒! =

𝑒° 𝑇!"# + 𝑒° 𝑇!"#
2

 (19) 

 
To calculate the mean saturation vapor pressure 𝑒!, the average between 𝑒° 𝑇!"#  
and 𝑒° 𝑇!"#  is calculated (Monteith & Unsworth, 2007). Actual vapor pressure is 
derived from relative humidity and calculated with one of the following formulas: 
 
 

𝑒! =
𝑒° 𝑇!"#

𝑅𝐻!"#
100 + 𝑒° 𝑇!"#

𝑅𝐻!"#
100

2
=  𝑒° 𝑇!  (20) 

Both saturation and actual vapor pressure are calculated in kPa (Allen et al., 1998; 
Guo et al., 2016). In this study actual vapor pressure is calculated with the second 
formula. Once actual and saturation vapor pressure are computed, the vapor 
pressure deficit is be expressed as: 
 
 𝑉𝑃𝐷 = 𝑒! − 𝑒! (21) 
 
The slope of the saturation vapor pressure curve in kPaºC-1 is calculated with the 
following equation (Allen et al., 1998): 
 
 ∆=

4098 𝑒!
𝑇! + 237.3 ! (22) 

 
The Penman model (Penman, 1948) and a couple of derivations of this model makes 
use of a wind function as aerodynamic component in the evaporation calculation and 
is later revised as follows: 
 
 𝐸! =  1.313 + 1.381𝑈! 𝑉𝑃𝐷 (23) 
 
, where the wind function is denoted between brackets (Penman, 1956). The wet 
environment surface temperature or equilibrium temperature, as described by 
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Szilagyi & Jozsa (2008), is needed in order to calculate evaporation models of 
Szilagyi-Jozsa and Morton CRAE (Morton, 1983). It can be estimated iteratively by 
the following equation since all other terms are known: 
 
 𝑅!

𝜆𝐸!"#
= 1 +

𝛾 𝑇! − 𝑇!
𝑒!∗ − 𝑒!

 (24) 

 
, where 𝑇! is the equilibrium temperature and 𝑒!∗ is the saturation vapor pressure at 𝑇! 
(Szilagyi & Jozsa, 2008; Guo et al., 2016). The temperature equilibrium is assumed 
to be lower than the air temperature. Sensible heat flux in Wm-2 is calculated with the 
following equation: 
 
 

𝐻 = 𝑐!𝑃
𝑇! − 𝑇!
𝑟!

 (25) 

 
, where 𝑇! and 𝑇! are surface and air temperature respectively (Monteith & Unsowrth, 
2007; Liu et al., 2007).   
 

3.2 Evaporation model 
The energy balance of Equation 1 is used as a starting point for deriving evaporation 
models. More complex equations include the fluxes of the energy balance directly or 
indirectly and more simple equations are derived empirically or calibrated with 
evaporation pans or lysimeters. In this model the evaporation methods are based on 
these energy fluxes or forcings. Net radiation and soil heat flux are measured directly 
with the AWS. The latent heat flux can be calculated with the evaporation methods or 
can be calculated by filling in the energy balance. To convert energy expressed in MJ 
day-1 to water depth in mm day-1, the latent heat of vaporization is used as 
conversion factor (Allen et al., 1998). The calculated evaporation flux by closing the 
energy balance will be used as a reference for the evaporation methods. This 
method is different than the more commonly used Bowen Ratio Energy Balance in 
semi-arid areas and is also used by Yamanaka et al. (2007) and Duan & 
Bastiaanssen (2017). The advantage of this method is that it is easier to compare the 
observed and calculated energy fluxes of the evaporation methods. As stated by 
Tamanaka et al. (2007), the disadvantage of this method is that the errors/biases in 
calculating the forcings of the energy balance will cumulate in the latent heat flux. 
Furthermore, Tanny et al. (2007) also includes the closure of the energy balance in 
their research. This method will further be referred as the energy balance closure 
(EBC) method. There are several methods used in literature in which to calculate 
evaporation and for this research sixteen methods have been selected (McMahoon 
et al., 2013; Guo et al., 2016). These methods will be categorized as temperature-
based, radiation-based, more complex techniques with additional factors as wind and 
resistances-based, and lastly, complementary relationship derivations of actual 
evaporation. While the former two are dealing mostly with empirically or calibrated 
techniques for specific locations, the latter are more directly derived from the energy 
balance. All evaporation methods are calculated in mm day-1 and the terms 𝐸 and 𝐸𝑇 
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are expressed as evaporation and (reference crop) evapotranspiration respectively. 
An overview of the evaporation models and requirements of meteorological 
measurements are shown in the Figure 11. 
 

 
Figure 11: Overview of the four categories of evaporation models and requirements of 
meteorological measurements for computation. The abbreviations for the evaporation models 
are mentioned for each model in section 3.2.1-4. 

3.2.1 Temperature-based 
One of the earlier works in estimating evaporation, and is still used, is the 
Thornthwaite method. This method introduced temperature as a parameter for 
evaporation (Monteith, 1994). The Thornthwaite formula is expressed as follows: 
 
 

𝐸!" = 16
𝐿
360

10
𝑇!
𝐼

∝!"
 (26) 

 
, where 𝐿  divided by 360 is a correctional term to transform monthly to daily 
evaporation, 𝑇!  is temperature, 𝐼  is a thermal index, and ∝!"  is a function of 𝐼 
(Thornthwaite, 1948; Pereira & Pruitt, 2004). Shortly after the publication by 
Thornthwaite, the Blaney-Criddle temperature based evaporation method surfaced in 
the scientific community in 1950. The Blaney-Criddle method was used by the FAO 
(Allen & Pruitt, 1986; Doorenbos et al., 1992) and is calculated with equation 27:  
 
 𝐸!" = 𝑐 𝑝! 0.46𝑇! + 8  (27) 
 
, where 𝑐 is a adjustment factor based on sunshine hours per day and minimum 
relative humidity, and 𝑝! is the ratio of actual daytime hours per day and total annual 
daytime hours (Doorenbos et al., 1992; Guo et al., 2016). Another temperature-
based evaporation model is the McGuiness-Bordne and makes use of extraterrestrial 
radiation calculated based on the sunrise equation, resulting in the following 
equation: 
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 𝐸!" =
1
68𝜆

𝑅! 𝑇! + 5  (28) 

 
, where 𝑅! is the extraterrestrial radiation (Oudin et al., 2005). Although this equation 
makes directly use of a radiation term, the Thornthwaite and Blaney-Criddle indirectly 
makes use of the sunrise equation. 

3.2.2 Radiation-based 
Radiation based temperature are not dependent on one factor like the temperature 
based methods, but also make use of net or solar radiation and other factors like 
relative humidity and latent heat of vaporization. The radiation-based methods are 
similar to the empirically temperature-based methods and/or derived from physical-
based methods. Turc (1961) showed that evaporation rates can be estimated with a 
simple climatic formula and is expressed with the following equation: 
 
 𝐸!"#$ = 0.0133 23.88𝑅! + 50

𝑇!
𝑇! + 15

+ 1 +
50 − 𝑅𝐻

70
 (29) 

 
The Turc equation estimates evaporation as a function of solar radiation, relative 
humidity and temperature (Guo et al., 2016). Another radiation-based evaporation 
method is the Hargreaves-Samani (Hargreaves & Samani, 1985) and is calculated as 
follows: 
 
 𝐸!" = 0.0135𝑅! 𝑇! + 17.8  (30) 
 
This method is a function of solar radiation, air temperature and latent heat of 
vaporization. Makkink (1957) simplified the Penman equation, described in the next 
section, and is expressed with equation 30: 
 
 𝐸!" = 𝑐!

∆
∆ + 𝛾

𝑅!
𝜆

− 𝑐! (31) 

 
, where 𝑐!  and 𝑐!  are constants of 0.61 (dimensionless) and 0.12 (mm day-1) 
respectively. The Makkink equation is calibrated to cool climate conditions where the 
surface is covered with reference crop (De Bruin, 1981; Alexandris et al., 2008). A 
more physical radiation-based evaporation method is approached by Priestley & 
Taylor (1972) and is described with the following equation: 
 
 𝐸!" =∝!"

∆
∆ + 𝛾

𝑅! − 𝐺
𝜆

 (32) 

 
, where ∝!"  is the Priestley-Taylor coefficient and equals 1.26 for advection-free 
saturated surfaces (Priestley & Taylor, 1972). According to Jensen et al. (1990), the 
Priestley-Taylor coefficient can be set between 1.70 and 1.75 for semi-arid regions. 
The Priesley-Taylor coefficient is optimized by filling in the EBC results as 
evaporation and averaging over the period. Inman-Bamber & McGlinchey (2003) did 
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a similar experiment in which they calculated evaporation rates based on the Bowen 
ratio energy balance (BREB) with a automatic weather station. Furthermore, Szilagyi 
& Jozsa (2007) and Rosenberry et al. (2007) show different ways to calculate BREB. 
In this research the BREB method uses, the temperature and actual vapor pressure 
gradient between the lower and upper arm as input, resulting in the following two 
equations: 
 
 𝛽 = 𝛾

𝑇!,! − 𝑇!,!
𝑒!,! − 𝑒!,!

 (33) 

 𝐸!"#! =
𝑅! − 𝐺
1 + 𝛽

 (34) 

 
, where 𝛽 is the Bowen ratio and the subscripts L and U are lower arm and upper 
arm respectively (Dexler et al., 2004; Nagler et al., 2005). Other ways to calculate the 
Bowen ratio are with saturation vapor pressure gradient, equilibrium temperature and 
vapor pressure gradient and vapor pressure deficit (Rosenberry et al., 2007; Inman-
Bamber & McGlinchey, 2003; Szilagyi & Jozsa, 2007). 

3.2.3 Wind and resistances-based 
One of the landmarks towards a physical-based model of evaporation was the 
publication of Penman (1948), which was the first to combine an energy equation 
with an aerodynamic approach for estimating evaporation. The use of net radiation 
as energy in the equation eliminates the use of temperature, which results in the 
following equation, known as the Penman or Penman combination equation 
(McMahoon et al., 2013): 
 
 𝐸!"# =

∆
∆ + 𝛾

𝑅!
𝜆
+

𝛾
∆ + 𝛾

𝐸! (35) 

 
, where 𝐸! is the aerodynamic component based on a wind speed function and the 
vapor pressure deficit. Another landmark was reached when Monteith et al. (1965) 
combined the Penman equation by linking the equation’s aerodynamic component of 
saturated surfaces through turbulent transport with the constraint of the energy 
balance (Dolman et al., 2014). The Penman-Monteith equation makes use of 
aerodynamic and surface resistances and is expressed as followed (Allen et al., 
1998): 
 
 

𝐸𝑇!" =
1
𝜆

∆ 𝑅! − 𝐺 + 𝑝!𝑐!
𝑒! − 𝑒!
𝑟!

∆ + 𝛾 1 + 𝑟!
𝑟!

 (36) 

 
, where 𝑝!  is the mean air density at constant pressure. The Penman-Monteith 
equation is a physical-based equation, which incorporates all components of the 
energy balance. Because of the many factors involved and calibration of the 
resistances terms the Penman-Monteith equation has become complex. The FAO 
decided to make guidelines for reference crop ET and has adopted a simplified 
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version of the Penman-Monteith equation by filling in reference crop estimates and 
eliminating the resistances terms, resulting in the following equation (Allen et al., 
1998): 
 
 

𝐸𝑇!"# =
0.408∆ 𝑅! − 𝐺 + 𝛾 900

𝑇 + 273𝑈! 𝑒! − 𝑒!
∆ + 𝛾 1 + 0.34𝑈!

 (37) 

 
, where 𝐸𝑇!"# is the reference crop, with a height of 0.12 meter, evapotranspiration 
for a vegetated surface of grasses. Allen et al. (1998) describes the derivation of the 
FAO Penman-Monteith equation for the grass reference crop. Another adoption of 
the Penman-Monteith equation is the Matt-Shuttleworth equation by Shuttleworth 
(2006). This equation involves the general applications of Penman-Monteith 
equation, but now for all well watered crops instead of a reference crop. The Matt-
Shuttleworth equation is calibrated to well-watered evaporative surfaces in windy 
semi-arid region and described with the following equation (Shuttleworth & Wallace, 
2009): 
 
 

𝐸𝑇!" =
∆ 𝑅! − 𝐺 + 𝑉𝑃𝐷!"

𝑉𝑃𝐷!
𝑝!𝑐!𝑈!𝑉𝑃𝐷!

𝑅!!"

∆ + 𝛾 1 + 𝑟!𝑈!𝑅!!"
 (38) 

 
, where 𝑉𝑃𝐷!"  and 𝑉𝑃𝐷!  are the vapor pressure deficit at 50 and 2 meters 
respectively, and 𝑅!!"  is an aerodynamic coefficient. The height of 50 meters is 
chosen arbitrarily and the calculations of the terms at 50 meters height and derivation 
of the equation are provided by Shuttleworth (2006). 

3.2.4 Actual evaporation 
Bouchet (1963) set up a method in which to approach actual evaporation and 
hypothesized that actual and potential evaporation depends on each other in a 
complementary way. This complementary relationship exists via feedbacks between 
the land and the atmosphere (McMahoon et al., 2013). Bouchet (1963) proposed this 
complementary relationship with the following equation: 
 
 𝐸!"# = 2𝐸!"# − 𝐸!"# (39) 
 
, where actual evaporation equals two wet environment evaporation minus potential 
evaporation. According to Huntington et al. (2011), potential evaporation will increase 
and actual evaporation will decrease when moisture availability decreases. Actual 
evaporation will be zero when no moisture is available. However, when the 
landscape becomes fully saturated the actual, wet and potential evaporation will all 
be equal to each other (McMahoon et al., 2013). This complementary relationship is 
important when measuring evaporation in semi-arid areas, and thus included in the 
evaporation model. A conceptual representation of the complimentary relationship is 
depicted in Figure 12. 
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Figure 12: Conceptual representation of the complementary relationship in terms of latent heat 
flux (Adopted from: Huntington et al., 2011). 

Brutsaert & Strickler (1979) proposed the advection-aridity model based on the 
symmetric complementary relationship approach. Their model results in the following 
formula: 
 
 𝐸!" = 2 ∝!"− 1

∆
∆ + 𝛾

𝑅!
𝜆
−

𝛾
∆ + 𝛾

𝐸! (40) 

 
Similar to the Brutsaert-Strickler formula, Szilagyi & Jozsa (2008) proposed a new 
modified advection-aridity model, resulting in the following equation: 
 
 𝐸!" = 2𝐸!" 𝑇! − 𝐸!"# (41) 
 
, where the term 𝐸!" 𝑇!  is the Priestley-Taylor equation calculated with the 
equilibrium temperature. Next to the complementary relationship, Granger & Gray 
(1989) proposed another method to estimate actual evaporation. The Granger-Gray 
method is based on the Penman equation and establishes a new dimensionless 
parameter called the relative drying power (Granger & Gray, 1989). This parameter 
accounts for the departure of saturated conditions and thus approach actual 
evaporation, expressed as followed: 
 
 𝐸!! =

∆𝐺!
∆𝐺! + 𝛾

𝑅! − 𝐺
𝜆

+
𝛾𝐺!

∆𝐺! + 𝛾
𝐸! (42) 

 
, where the term 𝐺! is the ratio actual to potential evaporation and a function of the 
relative drying power derived and discussed by Granger & Gray (1989). Another 
approach of estimating actual evaporation is the model of Morton (1983). According 
to McMahoon et al. (2013), Morton was at the forefront of evaporation analysis since 
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1965 and culminates in the mid-80s with three models for actual evaporation for land, 
shallow and deep lakes. Morton (1983) proposed his CRAE model for actual 
evaporation on land and is based on the complementary relationship described 
earlier. Furthermore, Nash (1989) discussed Morton’s CRAE model to be a valuable 
extension to the Penman equation in that it allows evaporation estimations under 
limited water supply. The model is tested for 143 basins and is expressed with the 
following equation (Morton, 1983): 
 
 𝐸𝑇!"#$ =

1
𝜆
𝑅! − 𝛾𝑃𝑓! + 4𝜖!𝜎 𝑇! + 273 ! 𝑇! − 𝑇!  (43) 

 
, where 𝜆 is in W day-1, 𝑓! is the vapor transfer coefficient, 𝜖! is the surface emissivity, 
and 𝜎 is the Stafan-Boltzmann coefficient. The Morton CRAE model is the most 
complex of evaporation methods used in this research. 
 

3.2.5 Statistical analysis 
In this research sixteen evaporation methods are used. To compare these different 
evaporation methods statistical analysis is applied. All the methods have been 
correlated with one another and the correlation coefficients have been produced in a 
single heatmap. The Pearson’s product correlation coefficient is used and is 
calculated as followed:  
 
 

𝑝!,! =
𝑐𝑜𝑣 𝑋,𝑌
𝜎!𝜎!

 (44) 

 
, where 𝑐𝑜𝑣 𝑋,𝑌  is the covariance between variable 𝑋 and 𝑌, and 𝜎 the standard 
deviation (Benesty et al., 2009). P-values of the correlation are calculated with a t-
distribution. r2 values between each method have been computed and are also 
produced in a single heatmap. The r2 values are calculated with taking the square of 
the correlation coefficient (Benesty et al., 2009) and have been used by Szilagyi & 
Jozsa (2007) among others to compare different evaporation methods. Individual 
regression plots between specific methods are produced with trend line and deviation 
from the reference EBC method. Significance of each evaporation method against 
the reference EBC method is calculated with p-values. The EBC method and the 
different evaporation models were analyzed using the following linear regression 
equation: 
 
 𝑌 = 𝑚𝑋 + 𝑏 (45) 
 
, where 𝑌  is the EBC method, 𝑚  and 𝑏  constants, and 𝑋  the evaporation model. 
Similar regression plots have been produced as shown in the paper by Tanny et al., 
(2007). Furthermore, for all evaporation methods with the EBC method the index of 
agreement (IA) has been calculated. The index of agreement is a relative difference 
measure and is expressed as (Willmott, 1982): 
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𝐼𝐴 = 1 −

𝑋! − 𝑌! !!
!!!
𝑋! − 𝑌 + 𝑌! − 𝑌 !!

!!!
 (46) 

 
, where  𝑌  is the mean of variable 𝑌  and perfect agreement between 𝑋  and 𝑌  is 
reached when IA equals 1 (Todd et al., 2000). The root mean square error (RMSE) is 
calculated with the following equation (Willmott, 1982): 
 
 

𝑅𝑀𝑆𝐸 = 𝑛!! 𝑋! − 𝑌! !
!

!!!
 (47) 

 
According to Willmott (1982), the RMSE is one of the best overall measures of model 
performance as they summarize the difference between the two variables and has 
been used by McMahoon et al. (2013) when comparing different evaporation 
methods. Furthermore, the Nash and Sutcliffe (1970) efficiency coefficient is 
calculated with the following formula: 
 
 

𝑁𝑆𝐸 = 1 −
𝑋! − 𝑌! !!

!!!
𝑋! − 𝑋 !!

!!!
 (48) 

 
, where 𝑁𝑆𝐸 is the Nash-Sutcliffe efficiency coefficient ranging from -∞ to 1, with 1 
meaning a perfect match. According to Schaefli & Gupta (2007), the Nash and 
Sutcliffe efficiency coefficient is a powerful tool in hydrological modeling and therefore 
included in the evaporation model. Performances of a comparison analysis of 
evaporation methods, including the IA, RMSE, NSE has, among others, been used 
by Legates & McCabe (1999), Todd et al. (2000) and Tanny et al. (2007). 
Furthermore, a sensitivity analysis is done for the different methods of calculating the 
Bowen ratio and optimizing the Priesley-Taylor coefficient for the Priesley-Taylor, 
Szilagyi-Jozsa and Brutsaert-Strickler methods.  
 

3.3 Water storage model 
To test the impact of choice of evaporation method on available water in a WHS, a 
simple water storage model is used (Tiggeloven, 2015). Six evaporation methods 
have been selected to calculate evaporation with this model, which cover the 
categories of methods, and performance of the statistical analysis has been 
produced to compare the sensitivity of the WHS to the selected evaporation methods. 
To measure the effectiveness of different evaporation time series as input a couple 
water harvesting systems are used in the water storage model. The model runs on 
daily time steps for the period 7th of October until 21st of December 2016s in which, 
the water storage increases with rainfall and declines with evaporation and daily 
usage of inhabitants of the region and community. Rainfall is measured at the AWS 
and because of poor results for the second rainy season; the WHS are set to full 
capacity at the beginning of the model run. After rainfall, runoff takes place after a 
threshold of 10 mm day-1 and has been integrated in the model with catchment area 
and runoff coefficient of 0.58. The threshold value is based on Li et al. (2004), which 
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measures a threshold between 7-9 mm day-1 for dry soils and Cammeraat (2004). 
The ROC value is based on two bare fallow plots (van de Giesen et al., 2000) To 
compare the performance of the WHS and the different evaporation methods as 
input, the results of the total evaporative fracture has been divided by the capacity of 
the WHS. The RMSE compares the deviations of the water storage during the period 
of modeling. The usage of water has been set to 0.012 m3 per day per inhabitant 
(Lasage et al., 2015). Figure 13 depicts a schematic overview of the evaporation 
method and the flow on input, parameters and calculation. First global parameters 
and specific WHS parameters are assigned, then the storage calculations are done. 
Output of the model contains of the calculated evaporative fracture, storage level and 
total water harvested. The dimensions and usage of the modeled sand dam and 
open pond as WHS have been specified in the next two sections. 

 
Figure 13: Overview of the evaporation model. 

3.3.1 Sand dam 
The modeled sand dam has estimated dimensions of the channel width, length and 
average depth of the sand dam located near Nyumbani Village, Kitui. The 
dimensions have been set to 40 m length, 9.25 m width and an average depth of 3 
m. Subsequently, the capacity of the sand dam reaches 1098 m3 and the catchment 
has been set to 5.2 km2 and meets the specification of the ephemeral river at 
Nyumbani Village. For evaporation in a sand dam only the top 90 cm of the sediment 
water storage is affected (Love et al., 2011). Furthermore, assumptions has been 
made that a runoff coefficient determines the percentage of water that reaches the 
dam and all the water can potentially be stored and infiltrated directly in the sediment 
of the sand dam. The community at Nyumbani Village exists of 1100 inhabitants. 

3.3.2 Open pond 
For the modeled open pond, smaller dimensions have been selected than the sand 
dam, as open pond systems supply water to a couple of households (Lasage & 
Verburg, 2015). The dimensions have been set to 5 m by 5 m with a depth of 2 m. 
The catchment has been set to 300 m2, making the open pond ideal for 
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approximately ten households. Average household size is assumed to consist of 5.8 
persons (Lasage et al., 2015).   
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4 Results 

4.1 Diurnal forcings and rainfall 
During the second rainy season of 2016, 175 mm of precipitation has been measured 
at the AWS in Kitui. This amount is a poor result for the region and is much below the 
average of 517 mm for the second rainy season according to the historical data with 
a standardized anomaly of -1.6. Only three years in the historical data have a lower 
anomaly than the one measured and where 1917, 1970 and 1983. The average 
measured temperature is 22 ºC with small deviations of 2 ºC. An overview of the 
temperature and rainfall during the period of measurements is given in Figure 14. 
After a dry October, precipitation was starting to fall in November with the peak 
between 14th and 21st of November. 
 

 
Figure 14: Rainfall and temperature measurements during the period 7th of October till 21st of 
December in Kitui, Kenya. The red line is temperature and bars represents rainfall. 

The primary forcings of the energy balance are depicted in a diurnal plot of 16th 
and 17th of October in Figure 15. The sensible heat flux is relatively stable during the 
day and night compared to the net radiation and soil heat flux. The net radiation 
reaches its peak during the middle of the day, while the soil heat flux reaches its 
peaker at the end of the afternoon. The latent heat flux has been derived by the 
Penman-Monteith equation, described in Equation 36. Cloud interactions causes the 
net radiation flux to have spikes during the day. 
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Figure 15: Diurnal energy fluxes during 16th and 17th of October 2016. 

The equilibrium temperature has been calculated on a daily time step with the 
assumption that it should be lower than the air temperature.  The results of the 
calculation are depicted in Figure 16, in which the equilibrium temperature is 
compared with the air temperature. The r2 value shows little agreement between 
changes in air temperature to changes in equilibrium temperature. Next to the 
regression plot of the equilibrium temperature, the measured versus calculated net 
radiation plot is shown. The calculation of net radiation overestimates at low radiation 
values and underestimates at higher radiation values. An r2 value of 0.7 is calculated. 
Both plots have a p-value lower than 0.01 computed with the Pearson correlation. 
 

 
Figure 16: Regression plot of the equilibrium temperature versus the air temperature (left) and 
measured net radiation versus calculated radiation (right). The green line represents the 
regression line and the dashed the 1:1 ratio. 

An overview of the average and standard deviation for all measured and 
calculated meteorological factors is given in Table 2. The soil heat flux is on average 
close to zero. 
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Table 2: Summary statistics of the measured and calculated meteorological factors. 

 
T1 T2 RH1 RH2 Rs Rn WS G Re Te 

Mean 22.79 22.13 68.46 70.26 68.46 9.21 2.43 -0.06 36.60 21.88 
Std dev 0.95 3.63 7.80 10.27 7.80 1.84 0.62 0.48 0.70 1.01 

 
Td lv psy es ea VPD slope ra Ea H 

Mean 16.49 2.45 0.07 2.91 1.88 1.02 0.17 178,96 4.92 0.22 
Std dev 1.45 <0.01 <0.01 0.19 0.17 0.29 <0.01 52.03 2.02 0.09 

*T1: Temperature 1.25m [ºC]; T2: Temperature 1.75m [ºC]; RH1: Relative humidity 1.25m [%]; RH2: Relative 
humidity 1.75m [%]; Rs: Solar radiation [MJ day-1]; Rn: Net radiation [MJ day-1]; WS: Wind speed [m s-1]; G: Soil heat 
flux [MJ day-1]; Re: Extraterrestrial radiation [MJ day-1]; Te: Equilibrium temperature [ºC]; Td: dew point temperature 
[ºC]; lv: Latent heat of vaporization [MJ day-1]; psy: Psychrometric constant [kPaºC-1]; es: saturation vapor pressure 
[kPa]; ea: actual vapor pressure [kPa]; VPD: Vapor pressure deficit [kPa]; slope: Slope of saturation vapor pressure 
curve [kPaºC-1]; ra: aerodynamic resistance [day m-1]; Ea: Wind-function [-]; H: sensible heat flux [MJ day-1]. 

4.2 Evaporation model results 
Sixteen methods of evaporation have been calculated with the processed data. An 
overview of the daily evaporation per category for the period of measuring has been 
provided in Figure 17 in which the EBC method is depicted in every subplot. The first 
subplot groups the temperature-based methods. As they are only based on 
temperature and the temperature fluctuations are within 2 ºC per day, the 
temperature-based methods evaporation fluctuations are also expected to be similar.  
The Thornthwaite method is the most sensitive to temperature fluctuations and has 
the highest standard deviation of the three temperature-based methods as shown in 
Table 3. The Blaney-Criddle method and McGuinnes-Bordne have the highest 
evaporation results on average. 
 

The second subplot in Figure 17 depicts the radiation-based methods. These 
methods have higher fluctuations and are sensitive to radiation input. The Turc, 
Haergraves-Samani and Makkink methods share similar behavior, however the 
Makkink method is continuously lower than the former two methods. The Priesley-
Taylor method has generally the same behavior as the other radiation-based 
methods, and closely matches the EBC method. The BREB method clearly shows 
different behavior and is on average lower than the EBC method, in contrast to the 
other radiation-based methods, which have on general higher values than the EBC 
method. 
 

The wind and resistances-based evaporation method are depicted in the third 
subplot of Figure 17, and generally agree more with the EBC method than the 
radiation- and temperature-based methods. The results of the Penman and FAO PM 
methods as well as Penman-Monteith and Matt-Shuttleworth show similar behavior 
and results. As all the methods in this category are derived from the Penman 
method, the outcome and behavior are similar and close to the EBC method with the 
exception of the first third of the measuring period. 
 

The last subplot contains the actual evaporation and complementary relationship 
methods. Large deviations between the methods are found in which the Brutsaert-
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Strickler and Szilagyi-Jozsa deviate below the EBC method in the first half of the 
measuring period and the Morton CRAE method above. Overall, the Granger-Grey 
and Morton CRAE show much agreement with the EBC method. 
 
Table 3: Summary statistics for the sixteen assessed evaporation methods. 

 
TW BC MB Turc HS MK PT BREB 

Mean 2.82 4.99 6.12 5.16 4.69 3.96 3.41 2.79 
Std dev 0.34 0.12 0.28 1.01 1.09 0.90 0.60 0.54 

 
Pen PM FAO MS BS SJ GG Mort EBC 

Mean 4.09 3.44 3.97 3.53 2.69 2.63 3.25 3.99 3.70 
Std dev 0.93 0.66 0.86 0.79 0.79 0.85 0.56 0.79 0.65 

* TW: Thornthwaite (1948); BC: Blaney-Criddle; MB: McGuinnes-Bordne; HS: Hargreaves-Samani; MK: Makkink; PT: 
Priesley-Taylor; BREB: Bowen Ratio Energy Balance; Pen: Penman (1948); PM: Penman-Monteith; FAO: FAO 
Penman-Monteith derivation; MS: Matt-Shuttleworth; BS: Brutsaert-Strickler; SJ: Szilagyi-Jozsa; GG: Granger-Grey; 
Mort: Morton CRAE; EBC: Energy Balance Closure. 
 

 
Figure 17: Overview of the daily measured evaporation of the 16 assessed methods grouped per 
category in every subplot.  

To compare the assessed evaporation methods a correlation and r2 heatmap has 
been produced and is depicted in Figure 18. The evaporation methods are showing 
agreeable results for the correlation and r2 when comparing within their category. The 
temperature-based methods have a correlation value above 0.8 and r2 value above 
0.6 with one another. Furthermore, the Makkink, Turc and Hargreaves-Samani show 
high values of the correlation and r2 results and the above discussed similarities 
between the wind and resistances-based method also show high values for 
correlation and r2. Despite the poor results of the Brutsaert-Strickler and Szilagyi-
Jozsa and other methods, agreeable results are found when compared with Priesley-
Taylor, BREB and one another. In comparison with the EBC method a couple of 
evaporation methods have agreeable results, namely the Priesley-Taylor, BREB, 
Brutsaert-Strickler, Granger-Grey and in lesser extent Morton CRAE and Szilagyi-
Jozsa. 
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Figure 18: Correlation (left) and r2 (right) heatmap of the assessed evaporation methods.  

Regression plots of the energy balance closure with assessed evaporation 
methods are produced in order to analyze the evaporation methods with the 
incoming and outgoing fluxes. As the temperature-based evaporation methods only 
fluctuate sparsely, they are depicted in Figure 19 with a straight line and do only 
slightly respond to different input of available energy. The r2 values of the 
temperature-based models are 0.04 or below. The radiation-based methods show 
better results with high r2 values of 0.99 for Priesley-Taylor and 0.88 for the Bowen 
Ratio Energy Balance method. Notably, the mostly recommended Penman-Monteith 
results in an r2 value of 0.62. Furthermore, the Brutsaert-Strickler, Granger-Grey and 
Morton CRAE produce agreeable r2 results of about 0.7 and higher. 

 
 
 
 
 

 
 
 
 
 



 
29 

 

 
Figure 19: Regression plots of the energy balance and assessed evaporation methods in which 
Rn-G (available energy) is depicted versus the latent plus sensible heat fluxes. The dashed line 
shows perfect agreement between available energy and the heat fluxes. 

Further statistical analysis is shown in Table 4 where the sixteen methods of 
evaporation are compared with the EBC method with Root Mean Square Error, Index 
of Agreement, Nash-Sutcliffe efficiency and corresponding p-values with Pearson 
correlation analysis. Only the temperature-based evaporation methods are 
significantly different from the EBC method and five methods have a Nash-Sutcliffe 
efficiency coefficient higher than zero, implicating agreement between the 
measurements. The largest deviations of all four statistical models from the EBC 
method are found with the McGuiness-Bordne and the best results of all four models 
are computed with the Priesley-Taylor and Granger-Gray method. Other evaporation 
methods with agreeable results are the Penman-Monteith, Morton CRAE and Matt-
Shuttleworth with positive values for the Nash-Sutcliffe efficiency coefficient, Root 
Mean Square Error value of below 3 and Index of agreement values higher than 0.8. 
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Table 4:  Overview of the results of the statistical analyses of the 16 evaporation methods 
versus the EBC method. 

 
TW BC MB Turc HS MK PT BREB 

RMSE 6.05 7.89 13.75 8.95 6.89 3.74 1.66 4.98 
IA 0.32 0.12 0.16 0.57 0.65 0.79 0.94 0.64 
NSE -1.90 -3.92 -13.93 -5.33 -2.75 -0.11 0.78 -0.96 
P-value 0.10 0.07 0.12 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

 
Pen PM FAO MS BS SJ GG Mort 

RMSE 4.16 2.77 3.96 3.09 5.99 6.92 2.62 2.68 
IA 0.76 0.85 0.75 0.83 0.64 0.59 0.86 0.88 
NSE -0.37 0.39 -0.24 0.24 -1.83 -2.79 0.46 0.43 
P-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 
* RMSE: Root Mean Square Error; IA: Index of Agreement; NSE: Nash-Sutcliffe Efficiency; P-value: Calculated 
Probability. 
 

As stated earlier different values of the Priesley-Taylor coefficient can be selected 
based on the location. Optimization of the coefficient results in a value of 1.36. In 
Table 5 new statistical analysis is shown for the evaporation methods, which 
incorporate the Priesley-Taylor coefficient. The Priesley-Taylor, Brutsaert-Strickler 
and Szilagyi-Jozsa all are showing better result for the statistical analysis, wherein 
the former results in near perfect score for the Index of Agreement and Nash-Sutcliffe 
efficiency. Further statistical analysis has been implemented to compute the 
difference between multiple approaches of calculating the Bowen ratio. As explained 
in the methods section, the Bowen ratio has been calculated in scientific research 
with at least four different approaches. Table 5 shows the statistical output of these 
approaches. The results for the Bowen ratio calculated with the saturation vapor 
pressure shows similar results with calculation of the actual vapor pressure. Both the 
Bowen ratio calculated with equilibrium temperature and vapor pressure deficit show 
more agreement with the EBC method, making the later the method with the best 
results after the Priesley-Taylor. 
 
Table 5: Results of the statistical analysis for the evaporation methods with optimized Priesley-
Taylor coefficient and different approaches of calculating the Bowen ratio. 

 
PT new BS new SJ new BREB es BREB Te BREB VPD 

RMSE 0.37 3.33 4.54 5.12 2.06 1.04 
IA 1.00 0.85 0.75 0.63 0.93 0.98 
NSE 0.99 0.12 -0.63 -1.07 0.67 0.91 
P-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 

 

4.3 Water storage model results 
Water storage has been calculated for the period 7th of October until 21st of 
December with evaporation of the EBC method as input, which will serve as the 
baseline to which the other evaporation methods are compared. Figure 18 shows the 
modeled water storage for the open pond and the sand dam. Usage for the open 
pond WHS is calculated at 0.71 m3 day-1 and for the sand dam at 13.49 m3 day-1 and 
average evaporation of 0.09 and 1.14 m3 day-1 respectively. The evaporative fracture 
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is 0.13 and 0.08 per m3 capacity for the open pond and sand dam respectively for the 
period of research. 
 

 
Figure 20: Modeled water storage and rainfall plots of an open pond (left) and sand dam (right). 
The red line displays the boundary capacity after which evaporation would not occur in the sand 
dam, yellow line is storage and bars represents rainfall. 

Six evaporation methods have been selected on the basis of the statistical 
analysis and categories, and contains one temperature-based, two radiation-based, 
one wind and resistances-based and two actual evaporation methods. Table 6 shows 
the deviation of evaporative fracture in percentages and Root Mean Square Error of 
the selected evaporation methods to the EBC method. A range of -24 to almost 10 % 
has been found for the open pond WHS for the period of 73 days and a range of -27 
to almost 8 % for the sand dam. Therefore, on average per day the selection of 
methods deviates up to 0.03 and 0.02 m3 of evaporation per cubic meter of WHS for 
open pond and sand dam respectively. Subsequently, a deviation of usable water of 
equivalent for the period of research of up to two and twenty-five persons for open 
pond and sand dam respectively, are shown when selecting an evaporation method. 
That is within 3.5 and 2.5 % of total harvesting fluxes. Highest Root Mean Square 
Error has been calculated for the Thornthwaite method and lowest for the Penman-
Monteith and Priesley-Taylor method.  
 
Table 6: Evaporative fracture of capacity of WHS and deviations for the six selected evaporation 
methods compared to the EBC method, where OP denotes open pond, SA sand dam, EF 
evaporative fracture and Dev the deviation from the EBC method. All values are in percentages 
of capacity of the WHS. 

  TW MK PT PM GG Mort 
Dev EF OP -23.95 8.74 -7.79 -5.72 -11.90 9.87 
RMSE OP 0.84 0.52 0.28 0.17 0.42 0.50 
Dev EF SA -27.28 6.82 -7.98 -6.82 -12.31 7.92 
RMSE SA 5.38 4.25 1.50 2.16 2.19 3.24 

* All evaporation methods in table have P-value < 0.01 in comparison with the EBC method. 
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5 Discussion 

5.1 Evaporation methods implications 
Sixteen evaporation methods are categorized into temperature-based, radiation-
based, wind and resistances-based, and actual evaporation. Evaporation of the 
modeled water storage with these methods have been calculated for the period of 7th 
of October until 21st of December 2016 and compared with one another with 
statistical analysis. Due to measurement failure, daily climate data of an incomplete 
sequence of thirteen days is retrieved for the first rainy season of 2017. Rainfall 
results for the second rainy season was below average with standardized anomaly of 
-1.6. The region of Kitui differs in elevation and rainfall in different measuring areas 
can show different results. Temperature was relatively stable for the period and the 
average measured temperature agrees with the average of historical data for the 
measured months. Diurnal fluxes show similar results compared to Tanny et al. 
(2007), where the sensible heat flux fluctuates just above 0 MJ day-1 and, if 
smoothed, agreeable radiation curve. However, the latent heat flux is not measured 
with an Eddy Covariance device and instead calculated with the energy-based 
Penman-Monteith method. Subsequently, the results of the latent heat flux strongly 
follow the input of net radiation and declines in the early evening, whereas Tanny et 
al. (2007) show a higher latent heat flux in the evening. The equilibrium temperature 
is calculated on the assumption that it is lower than the air temperature. Huntington 
et al. (2011), show similar results in which equilibrium temperature deviations 
become larger when temperatures are between 15 to 25 ºC.  
 

In general, the evaporation methods within their category are behaviorally similar. 
Temperature-based methods fluctuate slightly as their only input, temperature, is 
relatively stable in the period of measurement. The wind and resistances methods 
are very similar as they are derived from the same equation. The Priesley-Taylor 
shows the most agreement with the EBC method. While Brutsaert-Strickler and 
Szilagyi-Jozsa are derived from the Priesley-Taylor method, they show much less 
agreement. Due to the similar behavior, evaporation methods show high correlation 
and r2 values when comparing with other evaporation methods of the same category. 
Summarizing results of numerous studies for calculating evaporation, McMahoon et 
al. (2013) shows that the ratio of mean of Priesley-Taylor to mean of Penman-
Monteith has similar results in specific cases to this study. The ratio is for a semi-arid 
region in India 1.09 and 1.02 for an arid region in India, while this study shows a ratio 
of 0.99 and 1.07 for adjusted Priesley-Taylor alpha constant. Moreover, the Blaney-
Criddle high ratio to Penman-Monteith of 1.44 in semi-arid India agrees with the high 
value of 1.35 found in this research. 
 

When comparing the various evaporation methods with the EBC method, it has 
both an advantage and a disadvantage. Energy fluxes can easier be compared, 
however calculation of the EBC method can lead to biases, as it is not calculated by 
input of a single instrument, like an eddy covariance instrument. Every sensor, like 
temperature or wind speed measurements, has their own accuracy and resolution 
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summarized in Table 1. Additionally, calculation of the temperature gradient for the 
sensible heat flux and Bowen ratio can be computed by selecting different 
measurement height, potentially leading to different outcomes. Drexler et al. (2004) 
and Nie et al. (1992), argue that methods using sensible heat or BREB 
measurements reduce accuracy when the gradient between sensors approaches 
zero. When the gradient of the Bowen ratio is lower than 0.4, Nie et al. (1992) argue 
that small differences in the gradient can cause large percentage differences in latent 
heat flux and when Bowen ratio reaches -1, unrealistic values can be found. 
However, in this research no unrealistic values were computed when the Bowen ratio 
reaches a value lower than 0.4. Furthermore, DeMeo et al. (2003) show agreeable 
results when comparing energy balance methods with eddy covariance and 
calculated an r2 value of 0.99. Nagler et al. (2005), argue that unlike the eddy 
covariance method, the validity of the latent and sensible heat calculations of the 
energy balance methods cannot be checked for closure. Further research is needed 
to validate the EBC method. 
 

In comparison with the EBC method a couple of evaporation methods have 
agreeable results of correlation and r2 values higher than 0.7 and 0.6. These 
methods are the Priesley-Taylor, BREB, Brutsaert-Strickler, Granger-Grey and in 
lesser extent Morton CRAE and Szilagyi-Jozsa. The Priesley-Taylor, Granger-Gray 
and the Bowen Ratio Energy Balance show regression fit with all observations close 
to the regression line. The temperature-based methods are performing poorly with 
the regression plot and observations point to no feedback when available energy 
changes. Consequently, the regression line is flat. Similar results for the Priesley-
Taylor method where shown by the research of Rosenberry et al. (2007) in which 
evaporation methods are compared with the BREB vapor pressure deficit variant. 
Rosenberry et al. (2007), show an r2 value of 0.97 and is close to the value of 0.99 
for the r2 calculated in this research. The temperature-based methods Thornthwaite 
and Blaney-Criddle show notably more agreeable results with r2 of 0.73 in contrast to 
0.03 and 0.04 retrieved in this study for Thornthwaite and Blaney-Criddle 
respectively.  
 

Furthermore, the statistical methods show agreeable results for the Granger-
Gray, Penman-Monteith, Matt-Shuttleworth and Morton CRAE. Notably, the Priesley-
Taylor with the highest r2 performs the best according to the statistical methods. The 
Makkink method has, next to the close regression fit to 1:1, an agreeable Index of 
Agreement value of 0.77 and Winter et al. (1996), also show agreeable results when 
comparing with EBC method. The temperature-based methods have the lowest 
results for the statistical methods. For this research the original value of 1.26 of the 
Priesley-Taylor alpha coefficient has been used. Optimization of this coefficient 
results in a value of 1.36 and is far below the value between 1.70 and 1.75 for semi-
arid areas proposed by Jensen et al. (1990). With the new alpha coefficient the 
RMSE, NSE, IA and r2 show that the Brutsaert-Strickler, Szilagyi-Jozsa and Priesley-
Taylor methods show better results. The selected approach of calculating the Bowen 
ratio is of importance. Statistical analysis results improve when using vapor pressure 
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deficit or a calculation based on equilibrium temperature instead of actual or 
saturation vapor pressure gradient.  

5.2 Water storage implications 
With the results of the statistical analysis six evaporation methods have been 
selected to analyze their sensitivity to water storage. Of these six methods one 
temperature-based, two radiation-based, one wind and resistances-based and two 
actual evaporation methods have been selected. Only one wind and resistances-
based method is chosen, because they show similar behavior and are all derived 
from one equation. The results of the water storage model show that water stored of 
about 13.4 % of open pond capacity and about 7.6 % of sand dam capacity is 
evaporated in the period of 70 days. Deviations of the evaporative fracture of the six 
methods to the evaporative fracture of the EBC method range from -24 to 10 % for 
the open pond and -27 to 8 % for the sand dam. The deviation in fluxes amount up to 
3.5 and 2.5 % of total water harvested in the period of 70 days for open pond and 
sand dam respectively. While these values are for a 70-day period, they can grow 
larger if longer time periods are assigned. However, the sensitivity of the selected 
evaporation method on modeled water storage with longer time periods will be 
smaller for sand dams than open pond in which evaporation will not be assumed zero 
below the depth of 0.9 meter. Craig (2006) strengthens this issue by analyzing the 
influence of storage size, depth and water temperature to open pond evaporation and 
concludes that larges system will have less evaporative losses, with a decline in 
intensity of up to 5 %. While this research uses calculated evaporation from 
meteorological parameters measured in the study area, it can potentially differ when 
measuring the factors above open water or a riverbed. More specifically, water has a 
different heat capacity and albedo, and can therefore alter the calculations. Condie & 
Webster (1997), argue that gradients of temperature, humidity and wind speed above 
a water body can significantly influence evaporation. Depending on the WHS and the 
desired range of accuracy a sensitivity analysis of evaporative fracture resulted by 
evaporation methods of modeled water storage can be implemented. Selecting an 
evaporation method can lead up to 27 % of deviation of evaporative fracture. 
However, these deviations are a small fracture compared to the total water harvested 
flux. 
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6 Conclusion 
For this research sixteen method of evaporation are analyzed in order to assess the 
influence of the methods on modeled water storage, whether the methods are 
complex or solely based on one meteorological factor. When analyzing the behavior 
of the four categories of evaporation methods, the temperature-based methods are 
relatively stable due to minor fluctuations in daily temperature. Subsequently, they 
show a standard deviation between 0.21 and 0.31 mm day-1. Evaporation methods, 
which also have radiation and other meteorological factors as input, show more 
sensitivity to daily conditions and have standard deviations between 0.7 and 1.2 mm 
day-1.  
 

Agreeable results of correlation coefficients and r2 values have been calculated 
by comparing evaporation methods within their category. The r2 values of the heat 
fluxes compared with the available energy show agreeable results for the following 
methods: Priesley-Taylor (0.99), Bowen Ratio Energy Balance (0.88), Brutsaert-
Strickler (0.71), Granger-Gray (0.95) and Morton CRAE (0.76). Evaporation methods 
with regression line close to the energy balance closure fit of 1:1 are Makkink, 
Penman-Monteith, Matt-Shuttleworth, Granger-Gray and Morton CRAE. 
Temperature-based evaporation methods show horizontal regression lines, as the 
methods are not sensitive to the available energy. The results of the statistical 
analysis show agreeable output for the Penman-Monteith, Priestley-Taylor, Granger-
Gray and Morton CRAE. All evaporation methods, except the temperature-based 
methods, have significant p-values. Optimizing the Priesley-Taylor coefficient results 
in a value of 1.36. Sensitivity analysis for the multiple BREB approaches shows the 
most agreeable results for BREB calculated with vapor pressure deficit. 
 

For the modeled water storage of the sand dam deviation of the evaporative 
fracture of -27 and 8 % are computed and for the open pond -24 and 10 %. The 
largest deviations are calculated with the Thornthwaite method. The results show 
values of within 3.5 and 2.5 % of total water harvested for the period for the open 
pond and sand dam respectively. Only when dealing with smaller fluxes of water 
storage or evaporation calculation accuracy, the choice of evaporation method is 
important. This study shows that the best results for the semi-arid region of the study 
area in Kitui are calculated with the calibrated Priestley-Taylor method and the BREB 
method computed with vapor pressure deficit. Other methods showing agreeable 
results are Priesley-Taylor, Granger-Gray and Morton CRAE. When dealing with 
limited data, e.g. one or two meteorological factors, the Priesley-Taylor shows the 
best results and otherwise Thornthwaite method if only temperature data is available. 
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Appendix 
A1 List of equations 
 
Number Equation name Page 
1 Energy balance 8 
2 Inverse relative distance Earth-Sun (𝑑!) 10 
3 Solar declination (𝛿) 10 
4 Latitude in radians (𝜑) 10 
5 Sunset hour angle (𝜔) 10 
6 Length of day (𝐿) 10 
7 Extraterrestrial radiation (𝑅!) 11 
8 Clear sky solar or shortwave radiation (𝑅!") 11 
9 Net shortwave radiation (𝑅!") 11 
10 Net longwave radiation (𝑅!") 11 
11 Net radiation (𝑅!) 11 
12 Wind speed at height of 2 m (𝑈!) 12 
13 Aerodynamic resistance (𝑟!) 12 
14 (Bulk) surface or canopy resistance (𝑟!) 12 
15 Dew point temperature (𝑇!) 12 
16 Latent heat of vaporization (𝜆) 12 
17 Psychrometric constant (𝛾) 13 
18 Tetan’s equation (𝑒º) 13 
19 Saturation vapor pressure (𝑒!) 13 
20 Actual vapor pressure (𝑒!) 13 
21 Vapor pressure deficit (𝑉𝑃𝐷) 13 
22 Slope of saturation vapor pressure curve (∆) 13 
23 Wind speed function (𝐸!) 13 
24 Equilibrium temperature (𝑇!) 14 
25 Sensible heat flux (𝐻) 14 
26 Thornthwaite method 15 
27 Blaney-Criddle method 15 
28 McGuinnes-Bordne method 16 
29 Turc method 16 
30 Hargreaves-Samani method 16 
31 Makkink method 16 
32 Priesley-Taylor method 16 
33 Bowen ratio 17 
34 Bowen Ratio Energy Balance method 17 
35 Penman method 17 
36 Penman-Monteith method 17 
37 FAO Penman-Monteith method 18 
38 Matt-Shuttleworth method 18 
39 Actual evaporation (complementary relationship) 18 
40 Brutsaert-Strickler method 19 
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41 Szilagyi-Jozsa method 19 
42 Granger-Gray method 19 
43 Morton CRAE method 20 
44 Pearson product correlation 20 
45 Linear regression 20 
46 Index of Agreement (𝐼𝐴) 21 
47 Root Mean Square Error (𝑅𝑀𝑆𝐸) 21 
48 Nash-Sutcliffe efficiency coefficient (𝑁𝑆𝐸) 21 
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A2 Nomenclature 
 
Symbol Description Unit 
𝒄 Constant used in Blaney-Criddle evaporation method - 
𝒄𝟏 Constant used in Makkink evaporation method - 
𝒄𝟐 Constant used in Makkink evaporation method mm day-1 
𝒄𝒑 Specific heat MJ kg-1 ºC-1 

𝒅𝒓 Inverse relative distance Earth-Sun - 
𝑬 

𝑬𝒂𝒄𝒕 
𝑬𝒑𝒐𝒕 
𝑬𝒘𝒆𝒕 
𝑬𝑻 

Evaporation 
Actual evaporation 
Potential evaporation 
Wet evaporation 
Reference crop evapotranspiration 

 
mm day-1 

mm day-1 

mm day-1 

mm day-1 
𝑬𝒂 Winds speed function mm day-1 
𝒆𝒗 Enthalpy of vaporization J kg-1 

𝒆º 
𝒆𝒂 
𝒆𝒔 
𝒆𝒔* 

Tetan’s equation 
Actual vapor pressure 
Saturation vapor pressure 
Saturation vapor pressure with equilibrium temperature 

 
kPa 
kPa 
kPa 

𝒇𝒗 Constant in Morton’s method W mbar-1 
𝑮 Ground heat flux MJ day-1 
𝑮𝒈 Ratio actual to potential evaporation - 
𝑮𝒔𝒄 Solar constant MJ min-1 
𝒉 Height of crop m 
𝑯 Sensible heat flux MJ day-1 

𝑱 Julian day - 
𝑰 Thermal heat index - 
𝑲 Von karman’s constant - 
𝑳 Length of the day hour 
𝑳𝑨𝑰 Leaf area index m2 m-2 

𝑷 Atmospheric pressure kPa 
𝒑𝒚 Ratio actual and total annual daytime hours - 
𝒓 

𝒓𝒂 
𝒓𝒄𝟓𝟎 
𝒓𝒍 
𝒓𝒔 

Resistance 
Aerodynamic resistance 
Resistance constant at height of 50 meters 
Bulk stomatal resistance of well-illuminated leaf 
(Bulk) surface or canopy resistance 

 
s m-1 

s m-1 

s m-1 

s m-1 

𝑹  
𝑹𝒆 
𝑹𝒏 
𝑹𝒏𝒍 
𝑹𝒏𝒔 
𝑹𝒔 
𝑹𝒔𝒐 

Radiation 
Extraterrestrial radiation 
Net radiation 
Net longwave radiation 
Net shortwave radiation 
Solar radiation 
Clear sky solar radiation 

 
MJ day-1 

MJ day-1 

MJ day-1 

MJ day-1 

MJ day-1 

MJ day-1 

𝑹𝒘 Gas constant for water vapor J K-1 kg-1 
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𝑹𝑯 Relative humidity % 
𝑻 

𝑻𝒂 
𝑻𝒅 
𝑻𝒆 
𝑻𝑲 
𝑻𝒔 

Temperature 
Air Temperature 
Dew point temperature 
Equilibrium temperature 
Temperature in Kelvin 
Surface temperature 

 
ºC 
ºC 
ºC 
ºK 
ºC 

𝑼𝒛 Wind speed at height z m s-1 

𝑽𝑷𝑫 Vapor pressure deficit kPa 
𝒛  

𝒛𝒉 
𝒛𝒎 
𝒛𝒐𝒉 
𝒛𝒐𝒎 

Elevation or height above sea level 
Height of humidity measurements 
Height of wind speed measurements 
Roughness length governing heat and vapor transfer 
Roughness length governing momentum transfer 

m 
m 
m 
m 
m 

∝𝑻𝑾 Function of thermal heat index - 
∝𝑷𝑻 Priesley-Taylor coefficient - 
𝜷 Constant in Morton’s method ºC 
𝜸 Psychrometric constant kPa ºC-1 

𝜹 Solar declination rad 
𝚫 Slope of saturation vapor pressure curve kPa ºC-1 

𝜺 Ratio molecular weight of water vapor/dry air - 
𝝐𝒔 Land surface emissivity in Morton’s method - 
𝝀 Latent heat of vaporization MJ KG-1 
𝝈 Stefan-Boltzmann constant W day-1 ºK-4 

𝝋 Latitude rad 
𝝎 Sunset hour angle rad 
*Symbols used for the statistical analysis are not included in this table. 
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A3 Measuring devices supplement 
Rainfall is measured in a tipping bucket rain gauge in which a pulse is sending every 
0.1mm of rainfall per square meter. The aerodynamically designed rain collector is 
shaped to minimalize errors when sampling wind driven rain and meets the 
specifications of the World Meteorological Organization. In order to measure the wind 
speed an anemometer is constructed on the weather station at the top with a height 
of 2 meters. The anemometer is programmed to log the average wind speed and 
maximum wind speed over the selected interval by sending pulses to the data logger. 
Furthermore, two temperature and humidity probes are constructed to the weather 
station and is designed to capture atmospheric temperature and relative humidity 
measurements. Both sensors are set in one device with a thin film polymer sensor for 
humidity and a resistive platinum sensor for temperature measurements. The devices 
are set at a height of 1.25m and 1.75m. Solar radiation is measured with a net 
radiometer. The net radiometer consists of a thermopile sensor, which measures the 
algebraic sum of incoming and outgoing radiation. It can measure both short and 
long wave radiation. The measured incoming radiation received from a 180 degrees 
view of the hemisphere consists of long-wave radiation from the sky, direct and 
diffusive solar radiation. The measured outgoing radiation received from the surface 
of the soil consists of reflected solar radiation and long-wave terrestrial radiation. The 
radiometer is sensitive to wind and a theoretical correction can be made calculating 
the corrected solar irradiance with the following equation: 

 
 𝐸!"#$% (!"##) =  𝐸!"#$% ∙ (1 + 𝑥 ∙ 𝑣

!
!) (3) 

 
where 𝑥 is an empirical constant of approximately 0.01 and 𝑣 the wind speed in m/s. 
Next to the net radiometer another radiation measuring device, a pyranometer, is 
attached to the weather station. The pyranometer measures solar radiation and is a 
high output thermally stable sensor. It gives a voltage output that is converted to 
solar radiation in watt per square meter. Lastly, a barometer is constructed on the 
weather station and measures the atmospheric pressure. This device converts volt to 
pressure. 
 

Next to the devices attached on the pole there are also the subsurface related 
measurements. Water content reflectometers are placed in the soil in order to 
measure the soil moisture. This device consists of two stainless steel rods that are 
connected, in order to supply power, to a circuit board. Measurements are conducted 
by sending a wave signal from one rod to another. The travel time of the wave 
between the rods is depended on the dielectric permittivity of the soil. The dielectric 
permittivity itself is depended on the water content of the soil. The soil heat flux is 
measured with the Hukseflux plate and is placed in the soil. This device uses a 
thermopile to measure temperature gradients across the plate. The output voltage of 
the Hukseflux is proportional to the differential temperature. To measure the 
temperature in the soil a temperature probe is buried in the soil and is only suitable 
for shallow burial. This probe uses a thermistor to measure soil temperature. A 
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thermistor measures the electrical resistance that is depended on the temperature. 
To avoid thermal conduction it is placed horizontally. 
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A4 Main script 
################################################################################ 
################################################################################ 
#### Main script for the evaporation model and water storage model                                 ####                        
#### Timothy Tiggeloven                                                                                                              #### 
#### AWS_main.py                                                                                                                        #### 
#### Python 3.5.0                                                                                                                           #### 
####                                                                                                                                              #### 
#### Analyzes data from automatic weather station Kitui, Kenya                                                #### 
################################################################################ 
################################################################################ 
 
import time 
start_time = time.time() 
print ('starty start') 
 
# import modules 
import csv 
import datetime 
import matplotlib.dates as dt 
import numpy as np 
import pandas as pd 
from scipy.stats import pearsonr 
 
# import self-made functions, plots, storage model and toolbox 
import Evap_functions as EF 
import Evap_toolbox as tool 
import Evap_plots as Eplot 
import Evap_WHS as WHS 
 
''' 
Part I: Load input 
==================== 
''' 
 
df = pd.read_csv('Kenya_Meteo6.csv', encoding = "ISO-8859-1") 
Data = df.values.tolist() 
Date = np.array(Data)[4:,0] 
DateTime, DateYear, DateMonth, Year, Month = [], [], [], [], [] 
for i in Date: 
    y = datetime.datetime.strptime(i, '%d/%m/%y %H:%M') 
    DateTime.append(y) 
    DateYear.append(datetime.datetime.timetuple(y).tm_yday) 
    DateMonth.append(datetime.datetime.timetuple(y).tm_mday) 
    Year.append(datetime.datetime.timetuple(y).tm_year) 
    Month.append(datetime.datetime.timetuple(y).tm_mon) 
     
''' 
Part II: Decleration of variables 
================================ 
''' 
 
# declaring seperate lists for selected parameters 
#**************************************************************# 
#*** Make sure it starts on the first measurement of the day***# 
#**************************************************************# 
start = 351 - 1 # start of selected period 
Rn_end = 7458 - start # end of selected period 
end = 9089 - 1 # end of selected period 
Data = np.array(Data)[start:end,1:].astype(float) 
 
DateNum = dt.date2num(DateTime)     # convert dates into numeric 
DayNum = DateYear[start:end]        # number of the day of the year 
DayNumMonth = DateMonth[start:end]  # number of the day of the month 
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YearNum = Year[start:end]           # number of the year 
MonthNum = Month[start:end]         # number of the month of the year 
Time = DateNum[start:end]           # assigns time for period 
 
Record = Data[:,0]          # number of measurement 
Bat_V = Data[:,1]           # battery voltage [V] 
Bat_T = Data[:,2]           # battery temperature [C] 
Tsoil_1 = Data[:,3]         # temperature sediment at 0.05m depth [C] 
Tsoil_2 = Data[:,4]         # temperature  soil at 0.05m depth [C] 
Tair_1 = Data[:,5]          # temperature at height 1.25m [C] 
Tair_2 = Data[:,6]          # temperature at height 2m [C] 
RH_1 = Data[:,7]            # relative humidity at height 1.25m [%] 
RH_2 = Data[:,8]            # relative humidity at height 2m [%] 
Airpress_av = Data[:,9]     # average air pressure [hPa] 
Airpress_corr = Data[:,10]  # corrected average air pressure [hPa] 
Pyrano = Data[:,11]         # solar radiation at height 1.5m [W/m^2] 
#Rn_obs = Data[:,12]        # obs net radiation at height 1.5m [W/m^2] 
Rn_corr = Data[:Rn_end,13]  # corr net radiation at height 1.5m [W/m^2] 
SM_uS1 = Data[:,14]         # transmittivity sediment at depth 0.05m [us] 
SM_O1 = Data[:,15]          # moisture sediment at depth 0.05m [no unit] 
SM_uS2 = Data[:,16]         # transmittivity soil at depth 0.05m [us] 
SM_O2 = Data[:,17]          # moisture soil at depth 0.05m [no unit] 
SM_uS3 = Data[:,18]         # transmittivity soil at depth 0.1m [us] 
SM_O3 = Data[:,19]          # moisture soil at depth 0.1m [no unit] 
HF_1 = Data[:,20]           # heat flux sediment at depth 0.05m [W/m^2] 
HF_2 = Data[:,21]           # heat flux soil at depth 0.05m [W/m^2] 
Rain = Data[:,22]           # precipitation at height 1m [mm] 
W_Speed = Data[:,23]        # wind speed at height 2.25m [m/s] 
W_Dir = Data[:,24]          # wind direction at height 2.25m [degrees] 
 
''' 
Part III: Transforming data 
================================ 
''' 
 
# transform data to daily mean, min or max 
Time_day = tool.todaily(Time, Time, 'min') 
Tair_1max = tool.todaily(Tair_1, Time, 'max') 
Tair_1min = tool.todaily(Tair_1, Time, 'min') 
Tair_1mean = tool.todaily(Tair_1, Time, 'mean') 
Tair_2max = tool.todaily(Tair_2, Time, 'max') 
Tair_2min = tool.todaily(Tair_2, Time, 'min') 
RH_1max = tool.todaily(RH_1, Time, 'max') 
RH_1min = tool.todaily(RH_1, Time, 'min') 
RH_1mean = tool.todaily(RH_1, Time, 'mean') 
RH_2max = tool.todaily(RH_2, Time, 'max') 
RH_2min = tool.todaily(RH_2, Time, 'min') 
RH_2mean = tool.todaily(RH_2, Time, 'mean') 
Rn_corr_mean = tool.todaily(Rn_corr, Time, 'mean') 
HF_2mean = tool.todaily(HF_2, Time, 'mean') 
W_Speed_mean = tool.todaily(W_Speed, Time, 'mean') 
Airpress_corr_mean = tool.todaily(Airpress_corr, Time, 'mean') 
Rs_mean = tool.todaily(Pyrano, Time, 'mean') 
dayofyear = tool.todaily(DayNum, Time, 'min') 
dayofmonth = tool.todaily(DayNumMonth, Time, 'min') 
numofyear = tool.todaily(YearNum, Time, 'min') 
monthofyear = tool.todaily(MonthNum, Time, 'min') 
Tsoil_2mean = tool.todaily(Tsoil_2, Time, 'mean') 
Tsoil_2max = tool.todaily(Tsoil_2, Time, 'max') 
Tsoil_2min = tool.todaily(Tsoil_2, Time, 'min') 
Rain_day = tool.todaily(Rain, Time, 'sum') 
Tsurface = [((i + j) / 2 + (k + l) / 2) / 2 for i,j,k,l in zip(Tair_1min,\ 
            Tair_1max, Tsoil_2min, Tsoil_2max)] 
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# replace nan values with daily mean/max/min and between gaps 
W_Speed = tool.nanreplace(W_Speed, Time, 'mean') 
 
# watt/m2 to MJ/m2/day 
Rn_corr_mean = [float(i) * 0.0864 for i in Rn_corr_mean] 
Rn_corr = [float(i) * 0.0864 for i in Rn_corr] 
Rs_mean = [float(i) * 0.0864 for i in Rs_mean] 
HF_2mean = [float(i) * 0.0864 for i in HF_2mean] 
HF_1 = [float(i) * 0.0864 for i in HF_1] 
HF_2 = [float(i) * 0.0864 for i in HF_2] 
 
''' 
Part IV: Evaporation calculations 
================================== 
''' 
 
# Priestley-Taylor constant [-] 
alpha = 1.26 
 
# calculate extraterrestrial radiation 
suneq = tool.sunrise(dayofyear) 
Re_day = suneq[1] 
 
# calculate 15 min average fao penman-monteith evaporation 
FAO_soil = EF.FAO_15min(W_Speed, Tair_1, RH_1, Rn_corr, HF_2, Airpress_corr) 
FAO_sediment = EF.FAO_15min(W_Speed, Tair_1, RH_1, Rn_corr, HF_1, Airpress_corr) 
 
# calculate meteorological variables, thornthwaite parameters and breb variables 
Tmeanmax = [(i + j) / 2 for i,j in zip(Tair_1max, Tair_2max)] 
Tmeanmin = [(i + j) / 2 for i,j in zip(Tair_1min, Tair_2min)] 
RHmeanmax = [(i + j) / 2 for i,j in zip(RH_1max, RH_2max)] 
RHmeanmin = [(i + j) / 2 for i,j in zip(RH_1min, RH_2min)] 
RH_2mean = [(i + j) / 2 for i,j in zip(RH_2min, RH_2max)] 
meteo_var = tool.meteo(Tair_1max, Tair_1min, RH_1max, RH_1min,\ 
                       Airpress_corr_mean, W_Speed_mean, Tair_2max, Tair_2min,\ 
                       Tsoil_2min, Tsoil_2max) 
breb1 = meteo_var 
breb2 = tool.meteo(Tair_2max, Tair_2min, RH_2max, RH_2min, Airpress_corr_mean,\ 
                   W_Speed_mean, Tair_2max, Tair_2min, Tsoil_2min, Tsoil_2max) 
breb3 = tool.meteo(Tmeanmax, Tmeanmin, RHmeanmax, RHmeanmin, Airpress_corr_mean\ 
                   , W_Speed_mean, Tair_2max, Tair_2min, Tsoil_2min, Tsoil_2max) 
brebsoil = tool.meteo(Tsoil_2max, Tsoil_2min, RHmeanmax, RHmeanmin,\ 
                      Airpress_corr_mean, W_Speed_mean, Tair_2max, Tair_2min,\ 
                      Tsoil_2min, Tsoil_2max) 
 
# replace net radiation values 2017 with calculated values of solar radiation 
Rn_calc = tool.solartonet(Rn_corr_mean, Rs_mean, Re_day, meteo_var[8],\ 
                          Tair_1max, Tair_1min) 
Rn_corr_mean = Rn_calc[0] 
Rn_bin = Rn_calc[2] 
 
# calculate evaporation depended on temperature 
TW_mon = EF.TW_monthly(Tair_1mean, dayofyear, dayofmonth, monthofyear,\ 
                       numofyear) 
TW_day = EF.TW_daily(Tair_1mean, dayofyear, dayofmonth, monthofyear, numofyear) 
BC_day = EF.BC(meteo_var) 
MB_day = EF.MB(Re_day, meteo_var) 
 
# calculate evaporation depended on temperature and radiation 
HS_day = EF.HS(Rs_mean, meteo_var) 
JH_day = EF.JH(Rs_mean, meteo_var) 
Turc_day = EF.Turc(Rs_mean, meteo_var) 
MK_day = EF.MK(Rs_mean, meteo_var) 
PT_day = EF.PT(Rn_corr_mean, HF_2mean, meteo_var, alpha) 
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# calculate evaporation with resistances parameters 
FAO_day = EF.FAO_daily(Rn_corr_mean, HF_2mean, meteo_var) 
MS_day = EF.MS(Rn_corr_mean, meteo_var) 
Penman_day = EF.Penman(Rn_corr_mean, meteo_var) 
PM_day = EF.PM(Rn_corr_mean, HF_2mean, meteo_var) 
 
# calculate actual evaporation, complementary relationship 
BS_day = EF.BS(Rn_corr_mean, meteo_var, alpha) 
GG_day = EF.GG(Rn_corr_mean, HF_2mean, meteo_var) 
Mort_day = EF.Morton(Rn_corr_mean, meteo_var, Penman_day) 
SJ_day = EF.SJ(Rn_corr_mean, HF_2mean, Airpress_corr_mean, W_Speed_mean,\ 
               meteo_var, Penman_day, alpha) 
 
# calculate multiple BREB evaporation 
BREB_bin = EF.BREB(Rn_corr_mean, HF_2mean, Penman_day, breb1, breb2, breb3,\ 
                   brebsoil) 
BREB_day = BREB_bin[0] 
BREB_es = BREB_bin[1] 
BREB_vpd = BREB_bin[2] 
BREB_te = BREB_bin[3] 
 
# convert reference evaporation per 15 min measurement to daily measurement 
FAO_soil_chunk_mean = tool.todaily(FAO_soil, Time, 'mean') 
 
''' 
Part V: Statistics 
============================== 
''' 
 
# prepare data for symmary statistics of the parameters 
parameters = [Tair_1, meteo_var[0], meteo_var[17], RH_1mean, RH_2mean,\ 
              Rn_corr_mean, meteo_var[3], HF_2mean] 
calc_par = [Re_day, meteo_var[12], meteo_var[1], meteo_var[2], meteo_var[4],\ 
             meteo_var[8], meteo_var[9], meteo_var[10], meteo_var[14],\ 
             meteo_var[15]] 
headers1 = ['T1', 'T2', 'RH1', 'RH2', 'Rs', 'Rn', 'Ws', 'G'] 
headers2 = ['Re', 'Td', 'lv', 'psy', 'es', 'ea', 'VPD', 'slope', 'ra', 'H'] 
 
''' 
# print the summary statistics 
def printstats(head, par): 
    for i,j in zip(head, par): 
        print("%s mean: %s" % (i,np.nanmean(j))) 
        print("%s std: %s" % (i,np.nanstd(j))) 
printstats(headers1, parameters) 
printstats(headers2, calc_par) 
print("Rain sum: %s" % np.nansum(Rain_day)) 
''' 
 
Ea_day = [] 
for i,j in zip(meteo_var[3], meteo_var[9]): 
    Ea = (1.313 + 1.381 * i) * j 
    Ea_day.append(Ea) 
 
# calculate equilibrium heat flux (Rn, lv, penman, psy, Ta, ea, steps, sign) 
Te = tool.equitemp(Rn_corr_mean, meteo_var[1], Penman_day, meteo_var[2],\ 
                   meteo_var[0], meteo_var[8]) 
Ta = meteo_var[0] 
He = [] 
for i,j,k in zip (Ta, Te, meteo_var[14]): 
    z = 1.2 * 1.013 * pow(10, -3) * ((i - j) / k) 
    He.append(z) 
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# EBC calculation 
tmean = meteo_var[0] 
RG = [i - j for(i,j) in zip(Rn_corr_mean, HF_2mean)] 
EBC_day = [(i - j) / k for(i,j,k) in zip(RG, meteo_var[15], meteo_var[1])] 
 
# optimal alpha (PT, BS, SJ) 
alpha_list = [] 
for i,j,k,l,m,n in zip(meteo_var[10], meteo_var[2], Rn_corr_mean, HF_2mean,\ 
                       meteo_var[1], EBC_day): 
    z = n / ((i / (i + j)) * (k - l) / m) 
    alpha_list.append(z) 
 
alpha_new = np.nanmean(alpha_list) 
PT_opt = EF.PT(Rn_corr_mean, HF_2mean, meteo_var, alpha_new) 
BS_opt = EF.BS(Rn_corr_mean, meteo_var, alpha_new) 
SJ_opt = EF.SJ(Rn_corr_mean, HF_2mean, Airpress_corr_mean, W_Speed_mean,\ 
               meteo_var, Penman_day, alpha_new) 
 
alpha_arid = 1.7 
PT_arid = EF.PT(Rn_corr_mean, HF_2mean, meteo_var, alpha_arid) 
BS_arid = EF.BS(Rn_corr_mean, meteo_var, alpha_arid) 
SJ_arid = EF.SJ(Rn_corr_mean, HF_2mean, Airpress_corr_mean, W_Speed_mean,\ 
               meteo_var, Penman_day, alpha_arid) 
 
# prepare data for EBC plots 
TW_EH = [i * j + k for(i,j,k) in zip(TW_day, meteo_var[1], meteo_var[15])] 
BC_EH = [i * j + k for(i,j,k) in zip(BC_day, meteo_var[1], meteo_var[15])] 
MB_EH = [i * j + k for(i,j,k) in zip(MB_day, meteo_var[1], meteo_var[15])] 
Turc_EH = [i * j + k for(i,j,k) in zip(Turc_day, meteo_var[1], meteo_var[15])] 
HS_EH = [i * j + k for(i,j,k) in zip(HS_day, meteo_var[1], meteo_var[15])] 
MK_EH = [i * j + k for(i,j,k) in zip(MK_day, meteo_var[1], meteo_var[15])] 
PT_EH = [i * j + k for(i,j,k) in zip(PT_day, meteo_var[1], meteo_var[15])] 
BREB_EH = [i * j + k for(i,j,k) in zip(BREB_day, meteo_var[1], meteo_var[15])] 
Pen_EH = [i * j + k for(i,j,k) in zip(Penman_day, meteo_var[1], meteo_var[15])] 
PM_EH = [i * j + k for(i,j,k) in zip(PM_day, meteo_var[1], meteo_var[15])] 
FAO_EH = [i * j + k for(i,j,k) in zip(FAO_day, meteo_var[1], meteo_var[15])] 
MS_EH = [i * j + k for(i,j,k) in zip(MS_day, meteo_var[1], meteo_var[15])] 
BS_EH = [i * j + k for(i,j,k) in zip(BS_day, meteo_var[1], meteo_var[15])] 
SJ_EH = [i * j + k for(i,j,k) in zip(SJ_day, meteo_var[1], meteo_var[15])] 
GG_EH = [i * j + k for(i,j,k) in zip(GG_day, meteo_var[1], meteo_var[15])] 
Mort_EH = [i * j + k for(i,j,k) in zip(Mort_day, meteo_var[1], meteo_var[15])] 
diff = [i-j for(i,j) in zip(PM_EH, RG)] 
 
# prepare data frame for correlation, r2 and more 
headers = ['TW','BC','MB','Turc', 'HS', 'MK', 'PT', 'BREB', 'Pen', 'PM', 'FAO',\ 
           'MS','BS','SJ','GG','Mort','EBC'] 
Evapdf = pd.DataFrame(np.column_stack([TW_day,BC_day,MB_day,Turc_day,HS_day,\ 
                      MK_day,PT_day,BREB_day,Penman_day,PM_day,FAO_day,MS_day,\ 
                      BS_day,SJ_day,GG_day,Mort_day,EBC_day]), columns=headers) 
 
corr = Evapdf.corr() 
rsq = pow(corr, 2) 
std = Evapdf.std() 
mean = Evapdf.mean() 
sqr = pow(Evapdf, 0.5) 
meansqr = sqr.mean() 
 
# calculate slope of every component in dataframe 
EBC = Evapdf[['EBC']] 
slopes = pd.DataFrame(np.linalg.pinv(EBC.T.dot(EBC)).dot(EBC.T).\ 
                      dot(Evapdf.fillna(0)),['Slope'], Evapdf.columns) 
 
headers_new = ['TW','BC','MB','Turc','HS','MK','PT','BREB','Pen','PM','FAO',\ 
               'MS','BS','SJ','GG','Mort','PTopt','BSopt','SJopt','PTarid',\ 
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               'BSarid','SJarod','BRERB_es','BRERB_vpd','BRERB_te','EBC'] 
Evapdf_new = pd.DataFrame(np.column_stack([TW_day,BC_day,MB_day,Turc_day,\ 
                          HS_day,MK_day,PT_day,BREB_day,Penman_day,PM_day,\ 
                          FAO_day,MS_day,BS_day,SJ_day,GG_day,Mort_day,PT_opt,\ 
                          BS_opt,SJ_opt,PT_arid,BS_arid,SJ_arid,BREB_es,\ 
                          BREB_vpd,BREB_te,EBC_day]), columns=headers_new) 
 
mean_new = Evapdf_new.mean() 
 
# calculate RMSE, NSE and IA and store in dataframe 
RMSEdf, IAdf, NSdf, PVdf = [], [], [], [] 
row, rowIA, rowNS, rowPV = [], [], [], [] 
square, IAsquare, NSsquare = 0, 0, 0 
for h1 in headers_new: 
    for h2 in headers_new: 
        for i,j in zip(Evapdf_new[h1],Evapdf_new[h2]): 
            square += pow(i - j, 2) 
            IAsquare += pow(abs(i - mean_new[h2]) + abs(j - mean_new[h2]), 2) 
            NSsquare += pow(i - mean_new[h1], 2) 
             
        MSE = square / len(h1) 
        RMSE = pow(MSE, 0.5) 
        IA = 1 - (square / IAsquare) 
        NS = 1 - (square / NSsquare) 
        PC, PV = pearsonr(Evapdf_new[h1], Evapdf_new[h2]) 
         
        row.append(RMSE), rowIA.append(IA), rowNS.append(NS) 
        rowPV.append(round(PV,2)) 
         
        square, IAsquare, NSsquare = 0, 0, 0 
         
    RMSEdf.append(row),IAdf.append(rowIA),NSdf.append(rowNS),PVdf.append(rowPV) 
    row, rowIA, rowNS, rowPV = [], [], [], [] 
 
RMSEdf = pd.DataFrame(np.column_stack(RMSEdf),columns=headers_new,\ 
                      index=headers_new) 
IAdf = pd.DataFrame(np.column_stack(IAdf),columns=headers_new,index=headers_new) 
NSdf = pd.DataFrame(np.column_stack(NSdf),columns=headers_new,index=headers_new) 
PVdf = pd.DataFrame(np.column_stack(PVdf),columns=headers_new,index=headers_new) 
 
# calculate PM and EBC ratio 
PM_ratio = [] 
EBC_ratio = [] 
for i in mean: 
    ratio = i / mean[9] 
    PM_ratio.append(ratio) 
    ratio = i / mean[16] 
    EBC_ratio.append(ratio) 
 
# print ratios 
#for i,j,k in zip(headers, PM_ratio, EBC_ratio): 
#    print('%s PM ratio: %s and EBC_ratio %s' % (i,j,k)) 
 
# prepare diurnal data 
start = 1211 # 16 oct 
end = 1402 
Rn_oct = [float(i) for i in Rn_corr] 
G_oct = [float(i) for i in HF_2] 
Time_oct = Time[start:end] 
T1_oct = Tair_1[start:end] 
T2_oct = Tair_2[start:end] 
U2_oct = W_Speed[start:end] 
Rn_oct = Rn_oct[start:end] 
G_oct = G_oct[start:end] 
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P_oct = Airpress_corr[start:end] 
RH_oct = RH_1[start:end] 
diurnal_data = tool.diurnal(T1_oct,T2_oct,U2_oct,P_oct,RH_oct,Rn_oct,G_oct) 
lv_oct = diurnal_data[0] 
H_oct = diurnal_data[1] 
PM_oct = diurnal_data[2] 
EBC_oct = [(i-j-k)/l for i,j,k,l in zip(Rn_oct, G_oct, H_oct, lv_oct)] 
LE_oct = [i*j for i,j in zip(PM_oct,lv_oct)] 
 
''' 
Part VI: Water harvesting 
============================== 
''' 
# assign WH period 
start = 0 
end = 73 
 
# calculate water storage with selected evaporation method 
WHS_TW = WHS.WH(TW_day[start:end], Rain_day[start:end]) 
WHS_BC = WHS.WH(BC_day[start:end], Rain_day[start:end]) 
WHS_MB = WHS.WH(MB_day[start:end], Rain_day[start:end]) 
WHS_Turc = WHS.WH(Turc_day[start:end], Rain_day[start:end]) 
WHS_HS = WHS.WH(HS_day[start:end], Rain_day[start:end]) 
WHS_MK = WHS.WH(MK_day[start:end], Rain_day[start:end]) 
WHS_PT = WHS.WH(PT_day[start:end], Rain_day[start:end]) 
WHS_BREB = WHS.WH(BREB_day[start:end], Rain_day[start:end]) 
WHS_Pen = WHS.WH(Penman_day[start:end], Rain_day[start:end]) 
WHS_PM = WHS.WH(PM_day[start:end], Rain_day[start:end]) 
WHS_FAO = WHS.WH(FAO_day[start:end], Rain_day[start:end]) 
WHS_MS = WHS.WH(MS_day[start:end], Rain_day[start:end]) 
WHS_BS = WHS.WH(BS_day[start:end], Rain_day[start:end]) 
WHS_SJ = WHS.WH(SJ_day[start:end], Rain_day[start:end]) 
WHS_GG = WHS.WH(GG_day[start:end], Rain_day[start:end]) 
WHS_Mort = WHS.WH(Mort_day[start:end], Rain_day[start:end]) 
WHS_EBC = WHS.WH(EBC_day[start:end], Rain_day[start:end]) 
WHS_Time = Time_day[start:end] 
WHS_Rain = Rain_day[start:end] 
 
mean_op = np.nanmean(WHS_EBC[0]) 
mean_sa = np.nanmean(WHS_EBC[2]) 
 
# calculate statistics for water storage model (RMSE, NSE, IA, P-value) 
list_op = [WHS_TW[0], WHS_MK[0], WHS_PT[0], WHS_PM[0], WHS_GG[0], WHS_Mort[0]] 
list_sa = [WHS_TW[2], WHS_MK[2], WHS_PT[2], WHS_PM[2], WHS_GG[2], WHS_Mort[2]] 
WHS_RMSE_op, WHS_RMSE_sa, WHS_IA_op, WHS_IA_sa = [], [], [], [] 
WHS_NS_op, WHS_NS_sa, WHS_PC_op, WHS_PV_op = [], [], [], [] 
WHS_PC_sa, WHS_PV_sa = [], [] 
sq_op, sq_sa, IAsq_op, IAsq_sa, NSsq_op, NSsq_sa = 0, 0, 0, 0, 0, 0 
for i,j in zip(list_op, list_sa): 
    mean_meas_op = np.nanmean(i) 
    mean_meas_sa = np.nanmean(j) 
    for op,sa,ebc_op,ebc_sa in zip(i,j,WHS_EBC[0],WHS_EBC[2]): 
        sq_op += pow(op - ebc_op, 2) 
        sq_sa += pow(sa - ebc_sa, 2) 
        IAsq_op += pow(abs(op - mean_op)+abs(ebc_op - mean_op), 2) 
        IAsq_sa += pow(abs(sa - mean_sa)+abs(ebc_sa - mean_sa), 2) 
        NSsq_op += pow(op - mean_meas_op, 2) 
        NSsq_sa += pow(op - mean_meas_sa, 2) 
         
    MSE_op = sq_op / len(i) 
    MSE_sa = sq_sa / len(j) 
    RMSE_op = pow(MSE_op, 0.5) 
    RMSE_sa = pow(MSE_sa, 0.5) 
    IA_op = 1 - (sq_op / IAsq_op) 
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    IA_sa = 1 - (sq_sa / IAsq_sa) 
    NS_op = 1 - (sq_op / NSsq_op) 
    NS_sa = 1 - (sq_sa / NSsq_sa) 
    PC_op, PV_op = pearsonr(WHS_EBC[0], i) 
    PC_sa, PV_sa = pearsonr(WHS_EBC[2], j) 
     
    WHS_RMSE_op.append(RMSE_op), WHS_RMSE_sa.append(RMSE_sa) 
    WHS_IA_op.append(IA_op), WHS_IA_sa.append(IA_sa) 
    WHS_NS_op.append(NS_op), WHS_NS_sa.append(NS_sa) 
    WHS_PC_op.append(PC_op), WHS_PV_op.append(PV_op) 
    WHS_PC_sa.append(PC_sa), WHS_PV_sa.append(PV_sa) 
     
    sq_op, sq_sa, IAsq_op, IAsq_sa, NSsq_op, NSsq_sa = 0, 0, 0, 0, 0, 0 
 
# TW PT MK PM GG Mort 
TW_op = (WHS_TW[9] - WHS_EBC[9])# / WHS_EBC[9] * 100 
TW_sa = (WHS_TW[10] - WHS_EBC[10])# / WHS_EBC[10] * 100 
MK_op = (WHS_MK[9] - WHS_EBC[9])# / WHS_EBC[9] * 100 
MK_sa = (WHS_MK[10] - WHS_EBC[10])# / WHS_EBC[10] * 100 
PT_op = (WHS_PT[9] - WHS_EBC[9])# / WHS_EBC[9] * 100 
PT_sa = (WHS_PT[10] - WHS_EBC[10])# / WHS_EBC[10] * 100 
PM_op = (WHS_PM[9] - WHS_EBC[9]) #/ WHS_EBC[9] * 100 
PM_sa = (WHS_PM[10] - WHS_EBC[10])# / WHS_EBC[10] * 100 
GG_op = (WHS_GG[9] - WHS_EBC[9]) #/ WHS_EBC[9] * 100 
GG_sa = (WHS_GG[10] - WHS_EBC[10])# / WHS_EBC[10] * 100 
Mort_op = (WHS_Mort[9] - WHS_EBC[9])# / WHS_EBC[9] * 100 
Mort_sa = (WHS_Mort[10] - WHS_EBC[10])# / WHS_EBC[10] * 100 
 
#print("TW op: %s\nTW sa:%s\nMK op: %s\nMK sa:%s\nPT op: %s\nPT sa:%s\nPM op:\ 
#      %s\nPM sa:%s\n\GG op: %s\nGG sa:%s\nMort op: %s\nMort sa:%s\n"\ 
#      % (TW_op, TW_sa, MK_op, MK_sa, PT_op, PT_sa, PM_op, PM_sa, GG_op, GG_sa,\ 
#         Mort_op, Mort_sa)) 
 
end_time = time.time() 
print('Script took ' + str((end_time - start_time)) + " seconds") 
 
''' 
Part VII: Plotting data 
============================== 
''' 
 
''' Remove comment to run plot ''' 
#soilplot(Rn_corr, Pyrano, Time) 
#Eplot.EBCplot(RG, TW_EH, BC_EH, MB_EH, Turc_EH, HS_EH, MK_EH, PT_EH, BREB_EH,\ 
#              'TW', 'BC', 'MB', 'Turc', 'HS', 'MK', 'PT', 'BREB', '1') 
#Eplot.EBCplot(RG, Pen_EH, PM_EH, FAO_EH, MS_EH, BS_EH, SJ_EH, GG_EH, Mort_EH,\ 
#              'Pen', 'PM', 'FAO', 'MS', 'BS', 'SJ', 'GG', 'Mort', '2') 
#Eplot.EBCplot(RG, TW_EH, MK_EH, PT_EH, BREB_EH, Pen_EH, PM_EH, GG_EH, Mort_EH,\ 
#              'TW', 'MK', 'PT', 'BREB', 'Pen', 'PM', 'GG', 'Mort', '3') 
#Eplot.Corr_heatmap(corr, 'corr') 
#Eplot.Corr_heatmap(rsq, 'rsq') 
#Eplot.Diurnal(Time_oct, Rn_oct, G_oct, LE_oct, H_oct) 
#Eplot.EBCvsALLplot(TW_day[:73], Penman_day[:73], FAO_day[:73], PT_day[:73],\ 
#                   PM_day[:73], MK_day[:73], BS_day[:73], GG_day[:73],\ 
#                   BC_day[:73], Turc_day[:73], MS_day[:73], JH_day[:73],\ 
#                   MB_day[:73], HS_day[:73], BREB_day[:73], SJ_day[:73],\ 
#                   Mort_day[:73], EBC_day[:73], Time_day[:73]) 
#Eplot.TREGplot(Te, Ta, 'Equilibrium temperature', 'Air temperature') 
#Eplot.RnREGplot(Rn_corr_mean[:73], Rn_bin[:73], 'Measured Rn', 'Calculated Rn') 
#Eplot.REGplot(Ta, Te, 'Equilibrium temperature', 'Air temperature',\ 
#              Rn_corr_mean[:73], Rn_bin[:73], 'Measured Rn', 'Calculated Rn') 
#Eplot.rainplot(Rain_day[:73], Tair_1mean[:73], Time_day[:73]) 
#Eplot.WHSplot(WHS_Rain, WHS_EBC[0], WHS_EBC[2], WHS_EBC[4], WHS_Time) 
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A5 Toolbox script 
################################################################################ 
################################################################################ 
#### Toolbox for evaporation model and water storage model                                                      #### 
#### Timothy Tiggeloven                                                                                                                #### 
#### Evap_toolbox.py                                                                                                                     #### 
#### Python 3.5.0                                                                                                                           #### 
####                                                                                                                                                #### 
#### Transforms data and calculates meteorological factors                                                         #### 
################################################################################ 
################################################################################ 
''' 
Functions in this script are list alphabatically 
- diurnal: prepares diurnal data 
- equitemp: calculate Te 
- meteo: meterological variables library 
- nanreplace: replace NaN value with daily mean 
- solartonet: calculates net radiation and albedo 
- sunrise: calculates sunrise equation 
- todaily: transform data measurements to daily mean/max/min 
''' 
 
import math 
import numpy as np 
import pandas as pd 
 
def diurnal(T1, T2, Uz, Pa, RH, Rn, G): 
    Cp = 1.013 * pow(10, -3)   # specific heat at constant pressure [MJ/kg/C] 
    ep = 0.622                 # ratio molecular weight vapor/dry air [-] 
    ev = 2.501 * pow(10, 6)    # enthalpy of vaporization [J/kg] 
    h = 0.01                   # crop in height [m] 
    ka = 0.41                  # van Karmen constant [-] 
    roua = 1.2                 # mean density of air [kg/m^3] 
    rs = 70 / 86400            # resistance of the evaporative surface [s/m] 
    Rw = 461.5                 # gas constant for water vapor [J/K/kg] 
    WSh = 3.25                 # Wind speed measurements height [m] 
 
    diurnal_data = [] 
 
    # calculate dew point temperature 
    Td = [] 
    for i,j in zip(T1, RH): 
        H = (np.log10(j) - 2) / 0.4343 + (17.62 * i) / (243.12 + i) 
        z = 243.12 * H / (17.62 - H) 
        K = i + 273.15 
        z = (K / (1 - (K * np.log(j/100)) / (ev/Rw))) - 273.15 
        Td.append(z) 
     
    # calculate lv in [MJ/m2] 
    lv = [] 
    for i in T1: 
        z = 4185.5 * (751.78 - 0.5655 * (i + 273.15)) / 1000000 
        z = (2.501 - (2.361 * pow(10, -3)) * i) 
        lv.append(z) 
    diurnal_data.append(lv) 
 
    # calculate psychiometric constant 
    psy = [] 
    for i,j in zip(Pa, lv): 
        z = (Cp * i / 10) / (ep * j) 
        psy.append(z) 
 
    ea, es = [], [] 
    for i,j in zip(Td,T1): 
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        z = 0.6108 * np.exp((17.27 * i) / (237.3 + i)) 
        y = 0.6108 * np.exp((17.27 * j) / (237.3 + j)) 
        ea.append(z) 
        es.append(y) 
 
    # adjust wind speed data to reference height of 2 meter 
    U2 = [] 
    for i in Uz: 
        z = i * (4.87 / np.log(67.8 * WSh - 5.42)) 
        U2.append(z) 
 
    # calculate vapour pressure deficit 
    VPD = [i - j for i,j in zip(es,ea)] 
     
    # calculate slope of saturation vapour 
    slope = [] 
    for i,j in zip(es, T1): 
        z = (4098 * i) / np.power(j + 237.3, 2) 
        slope.append(z) 
     
    # calculate aerodynamic resistance with d, zom, zoh and wind speed 
    d = 2 / 3 * h 
    zom = 0.123 * h 
    zoh = 0.0123 * h 
    ra = [] 
    for i in U2: 
        z = np.log((2 - d) / zom) * np.log((1.25 - d) / zoh) / (pow(ka, 2) * i)\ 
            / 86400 
        ra.append(z) 
 
    # calculate Penman-Monteith 
    ET0 = [] 
    for i,j,k,l,m,n,o in zip(psy, slope, Rn, G, VPD, ra, lv): 
        z = ((j * (k - l) + roua * Cp * m / n) / (j + i * (1 + rs /n))) / o 
        ET0.append(z) 
     
    # calculate sensible heat flux [MJ/m2] 
    H = [] 
    for i,j,k in zip (T2, T1, ra): 
        z = roua * Cp * ((i - j) / k)  
        H.append(z) 
 
    return lv, H, ET0 
 
def equitemp(Rn, lv, penman, psy, Ta, ea): 
    sign = 0.01 
    steps =  0.001 
    lim = 3000 
    Te = [] 
    a = 0 
    for i,j,k,l,m,n in zip(Rn, lv, penman, psy, Ta, ea): 
        x = m - steps 
        diff = 1 
        difflow = 1 
        Tlow = x 
        countlow = 0 
        count = 0 
        a += 1 
        while (diff >= sign): 
            es = 0.6108 * np.exp((17.27 * x) / (237.3 + x)) 
            z = (i / (j * k)) - (1 + (l * (x - m) / (es - n))) 
            diff = abs(z) 
            y = x 
            x -= steps 
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            count += 1 
 
            # save the lowest difference 
            if diff < difflow: 
                difflow = diff 
                Tlow = y 
                countlow = count 
            # if limit is reached, assign lowest difference 
            if count > lim: 
                y = Tlow 
                diff = 0 
 
        Te.append(y) 
 
    return Te 
         
def meteo(tmax, tmin, RHmax, RHmin, Pa, Uz, tmax2, tmin2, soil1, soil2): 
    Cp = 1.013 * pow(10, -3)   # specific heat at constant pressure [MJ/kg/C] 
    Cpj = 1013                 # heat capacity of air [J/kg/C] 
    ev = 2.501 * pow(10, 6)    # enthalpy of vaporization [J/kg] 
    ep = 0.622                 # ratio molecular weight vapor/dry air [-] 
    Ez = 1208                  # elevation of measurements [m] 
    h = 0.01                   # crop in height [m] 
    ka = 0.41                  # van Karmen constant [-] 
    roua = 1.2                 # mean density of air [kg/m^3] 
    Rw = 461.5                 # gas constant for water vapor [J/K/kg] 
    WSh = 3.25                 # wind speed measurements height [m] 
     
    # calculate mean T and RH based on max and min T and RH per day 
    tmean = [(i + j) / 2 for i,j in zip(tmax, tmin)] 
    tmean2 = [(i + j) / 2 for i,j in zip(tmax2, tmin2)] 
    RHmean = [(i + j) / 2 for i,j in zip(RHmax, RHmin)] 
    smean = [(i + j) / 2 for i,j in zip(soil1, soil2)] 
    surfmean = [(i + j) / 2 for i,j in zip(smean, tmean)] 
 
    # calculate dew point temperature 
    Td = [] 
    for i,j in zip(tmean, RHmean): 
        H = (np.log10(j) - 2) / 0.4343 + (17.62 * i) / (243.12 + i) 
        z = 243.12 * H / (17.62 - H) 
        K = i + 273.15 
        z = (K / (1 - (K * np.log(j/100)) / (ev/Rw))) - 273.15 
        Td.append(z) 
 
    # Calculate latent heat of vaporization 
    lv = [] 
    for i in tmean: 
        z = 4185.5 * (751.78 - 0.5655 * (i + 273.15)) / 1000000 
        z = 2.501 - (2.361 * pow(10, -3)) * i 
        lv.append(z) 
    
    # calculate psychiometric constant 
    psy = [] 
    for i,j in zip(Pa, lv): 
        z = (Cp * i / 10) / (ep * j) 
        psy.append(z) 
 
    # adjust wind speed data to reference height of 2 meter 
    U2 = [] 
    for i in Uz: 
        z = i * (4.87 / np.log(67.8 * WSh - 5.42)) 
        U2.append(z) 
 
    # calculate mean, max, min and Td saturation vapour 
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    es, emean, emax, emin, esdew = [], [], [], [], [] 
    for i,j,k,l in zip(tmean, tmax, tmin, Td): 
        z = 0.6108 * np.exp((17.27 * i) / (237.3 + i)) 
        y = 0.6108 * np.exp((17.27 * j) / (237.3 + j)) 
        x = 0.6108 * np.exp((17.27 * k) / (237.3 + k)) 
        w = (x + y) / 2 
        v = 0.6108 * np.exp((17.27 * l) / (237.3 + l)) 
        emean.append(z), emax.append(y), emin.append(x), es.append(w) 
        esdew.append(v) 
 
    # calculate actual vapour 
    ea = [] 
    for i,j,k,l in zip(RHmax, RHmin, emax, emin): 
        z = ((l * i / 100) + (k * j / 100)) / 2 
        ea.append(z) 
 
    # calculate actual vapor with dew point temperature 
    eadew = [] 
    for i in Td: 
        z = 0.6108 * np.exp((17.27 * i) / (237.3 + i)) 
        eadew.append(z) 
    ea = eadew 
     
    # calculate vapour pressure deficit 
    VPD = [i - j for i,j in zip(es,ea)] 
     
    # calculate slope of saturation avpour 
    slope = [] 
    for i,j in zip(emean, tmean): 
        z = (4098 * i) / np.power(j + 237.3, 2) 
        slope.append(z) 
 
    # calculate aerodynamic resistance with d, zom, zoh and wind speed 
    d = 2 / 3 * h 
    zom = 0.123 * h 
    zoh = 0.0123 * h 
    ra = [] 
    for i in U2: 
        z = np.log((2 - d) / zom) * np.log((1.25 - d) / zoh) / (pow(ka, 2) * i)\ 
            / 86400 
        ra.append(z) 
 
    # calculate surface temperature 
    y, ts = np.array([-0.05, 1.25, 2.00]), [] 
    ''' 
    for i,j,k in zip(smean, tmean2, tmean): 
        x = np.array([i,j,k]) 
        m, b = np.polyfit(np.log(x), y, 1) 
        surface = np.exp(-b/m) 
        ts.append(surface) 
    ''' 
     
    # calculate sensible heat flux 
    H = [] 
    for i,j,k in zip (tmean2, tmean, ra): 
        z = roua * Cp * ((i - j) / k) 
        H.append(z) 
 
    return tmean, lv, psy, U2, es, emean, emax, emin, ea, VPD, slope, RHmean,\ 
           Td, esdew, ra, H, eadew, tmean2, ts, smean 
 
def nanreplace(datalist, time, stat): 
    ''' 
    Replaces nan values in list with daily mean/max/min 
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    ''' 
    # calculate and correct for offset of the beginning of the moment of the day 
    time = [i - time[0]%1 for i in time] 
     
    # store values in list per day or gaps 
    a, b, data, NAN_data = 0, 1, [], [] 
    for i,j in zip(time, datalist): 
        if a == 0: 
            a += 1 
            NAN_data.append(j) 
        else: 
            if (i%1 == 0): 
                data.append(NAN_data) 
                NAN_data = [] 
                NAN_data.append(j) 
            elif b == len(time): 
                NAN_data.append(j) 
                data.append(NAN_data) 
            else: 
                NAN_data.append(j) 
        b += 1 
 
    # replace nan values with daily average or average between gaps 
    a, b, new_data = 0, 0, [] 
    data = np.array(data) 
    for i in data: 
        for j in i: 
            if (j != j): 
                if stat == 'mean': 
                    z = np.nanmean(data[a]) 
                elif stat == 'max': 
                    z = np.nanmax(data[a]) 
                elif stat == 'min': 
                    z = np.nanmin(data[a]) 
                if np.isnan(z) == True: 
                    z = b 
                    new_data.append(z) 
                else: 
                    new_data.append(z) 
                b = z 
            else: 
                new_data.append(j)                
        a += 1 
         
    return new_data 
 
def solartonet(Rn, Rs, Ra, ea, tmax, tmin): 
    Ez = 1208                  # elevation of measurements [m] 
    sig = 4.903 * pow(10, -9)  # Stefan-Boltzmann constant [MJ/K4/m2/day] 
 
    # calculate clear-sky solar radiation 
    Rso = [] 
    for i in Ra: 
        z = (0.75 + 2 * pow(10, -5) * Ez) * i 
        Rso.append(z) 
 
    # calculate longwave net radiation 
    Rnl = [] 
    for i,j,k,l,m in zip(tmax, tmin, ea, Rs, Rso): 
        z = sig * ((pow(i + 273.16, 4) + pow(j + 273.16, 4)) / 2) *\ 
            (0.34 - 0.14 * pow(k, 0.5)) * (1.35 * (l / m) - 0.35) 
        Rnl.append(z) 
     
    # calculate average albedo 
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    Rn_al, Rs_al, Rnl_al = Rn[:73], Rs[:73], Rnl[:73] 
    albedo_list = [] 
    for i,j,k in zip(Rn_al, Rs_al, Rnl_al): 
        z = 1 - ((i + k) / j) 
        albedo_list.append(z) 
    albedo = np.nanmean(albedo_list) 
 
    # calculate net radiation for assigned period 
    Rn_bin = [] 
    for i,j in zip(Rs, Rnl): 
        z = (1 - albedo) * i - j 
        Rn_bin.append(z) 
 
    Rn_calc = Rn_al 
    for i in Rn_bin[73:]: 
        Rn_calc.append(i) 
         
    return Rn_calc, albedo_list, Rn_bin 
 
def sunrise(DayNum): 
    Gsc = 0.0820               # solar constant [MJ/m2/min] 
    lat = -1.1315313           # latitude in degrees [degrees] 
    om = lat * math.pi / 180   # latitude in radians 
     
    # calculate photoperiod 
    daylight, Re = [], [] 
    for i in DayNum: 
        dr = 1 + 0.033 * math.cos(2 * i * math.pi / 365) 
        delta = 0.409 * math.sin(2 * i * math.pi / 365 - 1.39) 
        ws = math.acos(-math.tan(om) * math.tan(delta)) 
        hours = 24 * ws / math.pi 
        daylight.append(hours) 
        z = (24 * 60 / math.pi) * Gsc * dr * (ws * math.sin(om) *\ 
            math.sin(delta) + math.cos(om) * math.cos(delta) * math.sin(ws)) 
        Re.append(z) 
 
    return daylight, Re 
 
def todaily(datalist, time, stat): 
    ''' 
    Transforms data measurements to daily mean/max/min 
    ''' 
    # calculate and correct for offset of the beginning of the moment of the day 
    time = [i - time[0]%1 for i in time] 
     
    # find gaps in data and count measurements to be discarded 
    a, b, chunklen = 0, 0, [] 
    for i in time: 
        if a == 0: 
            a += 1 
            b += 1 
        else: 
            if (i%1 == 0): 
                chunklen.append(b) 
                b = 1 
            else: 
                b += 1 
 
    # calculate which sequence in data of days needs te be discarded 
    a, delstart, delend = 0, [], [] 
    for i in chunklen: 
        if i == 96: 
            a += 1 
        else: 
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            z = a * 96 
            y = a * 96 + i 
            delstart.append(z), delend.append(y) 
 
    # discard the data of days which possess gaps 
    delstart.reverse(), delend.reverse() 
    for i,j in zip(delstart, delend): 
        Datax = np.delete(datalist,(np.r_[i:j])) 
 
    # yield n-sized chunks in list and succeed in list of measurements per day 
    chunks = lambda l, n: [l[x: x+n] for x in range(0, len(l), n)] 
    Data_chunk = chunks(Datax, 96) 
 
    # calculate mean, minimal and maximum values per day and store in list 
    if stat == 'mean': 
        Data_day = [float(np.nanmean(i)) for i in Data_chunk] 
    elif stat == 'max': 
        Data_day = [float(np.nanmax(i)) for i in Data_chunk] 
    elif stat == 'min': 
        Data_day = [float(np.nanmin(i)) for i in Data_chunk] 
    elif stat == 'sum': 
        Data_day = [float(np.nansum(i)) for i in Data_chunk] 
 
    return Data_day 
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A6 Evaporation model 
################################################################################ 
#### Evaporation model                                                                 #### 
#### Timothy Tiggeloven                                                                 #### 
#### Evap_functions.py                                                                  #### 
#### Python 3.5.0                                                                                                                           #### 
####                                                                                     #### 
#### Calculates various evaporation methods                                            #### 
################################################################################ 
################################################################################ 
 
''' 
The following methods of evaporation are used in this script (alphabetically): 
- Blaney-Criddle 
- Bowen Ratio Energy Balance 
- Brutsaert-Strickler 
- FAO Penman-Monteith (daily and 15 min average) 
- Granger-Gray 
- Hargreaves-Samani 
- Jensen-Haise 
- Makkink 
- Matt-Shuttleworth 
- McGuiness-Bordne 
- Morton CRAE 
- Penman 
- Penman-Monteith 
- Priestly-Taylor 
- Szilagyi-Jozsa 
- Thornthwaite (daily and monthly) 
- Turc 
''' 
 
# import libraries 
import Evap_toolbox as tool 
import math 
import numpy as np 
 
# declare global variables 
Cp = 1.013 * pow(10, -3)   # specific heat at constant pressure [MJ/kg/C] 
ep = 0.622                 # ratio molecular weight vapor/dry air [-] 
epmo = 0.92                # land surface emmissivity [-] 
Ez = 1208                  # elevation of measurements [m] 
fz = 28                    # constant in Morton [W/m2/mbar] 
h = 0.01                   # crop in height [m] 
ka = 0.41                  # van Karmen constant [-] 
lat = -1.1315313           # latitude in degrees [degrees] 
pe = 0.27                  # mean daily percentage of annual daytime hours 
roua = 1.2                 # mean density of air [kg/m^3] 
rs = 70 / 86400            # resistance of the evaporative surface [s/m^-1] 
sigma = 5.67 * pow(10, -8) # stefan-boltzmann constant in Morton [W/m2/k4] 
sign = 0.001               # significance of the equilibrium Te [-] 
step = 0.01                # steps in which to iterate equilibrium Te [-] 
WSh = 3.25                 # Wind speed measurements height [m] 
 
 
def BC(meteo):     
    # unpack meteorological variables 
    tmean = meteo[0] 
 
    # calculate evaporation using Blaney-Criddle 
    E = [] 
    for i in tmean: 
        z = pe * (0.46 * i + 8) 
        E.append(z) 
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    return E 
 
def BREB(Rn, GF, pen1, meteo1, meteo2, meteo3, soil): 
    # unpack meteorological variables 
    lv = meteo3[1] 
    psy = meteo3[2] 
    tmean1, tmean2, tmean3, tsoilmean = meteo1[0], meteo2[0], meteo3[0], soil[0] 
    es1, es2, es3 = meteo1[4], meteo2[4], meteo3[4] 
    emean1, emean2, emean3 = meteo1[5], meteo2[5], meteo3[5] 
    emax1, emax2, emax3 = meteo1[6], meteo2[6], meteo3[6] 
    emin1, emin2, emin3 = meteo1[7], meteo2[7], meteo3[7] 
    ea1, ea2, ea3 = meteo1[8], meteo2[8], meteo3[8] 
    emaxsoil, eminsoil, essoil, easoil = soil[6], soil[7], soil[4], soil[8] 
 
    # calculate equilibrium temperature and vapor with instrument 1 
    Te1 = tool.equitemp(Rn, lv, pen1, psy, tmean1, ea1) 
    esTe1 = [0.6108 * np.exp((17.27 * i) / (273.3 + i)) for i in Te1] 
 
    # calculate equilibrium temperature and vapor with mean instruments 
    pen2 = Penman(Rn, meteo3) 
    Te2 = tool.equitemp(Rn, lv, pen2, psy, tmean3, ea3) 
    esTe2 = [0.6108 * np.exp((17.27 * i) / (273.3 + i)) for i in Te2] 
 
    # Calculate evaporation using BREB 
    BREB_ea, BREB_es, BREB_vpd, BREB_te = [], [], [], [] 
    for i,j,k,l,m,n,o,p,q,r,s,t,u,v,a,b,c,d,e in zip(psy, tmean1, tmean2, ea1,\ 
    ea2, Rn, GF, lv, Te1, esTe1, Te2, esTe2, ea3, tmean3, tsoilmean, easoil,\ 
    essoil, es1, es2): 
        ''' 
        Select breb with 2 instrument arms, equilibrium temperature 1 or 2 
        ''' 
        b_ea = i * (j - k) / (l - m)   # actual vapor gradient 
        b_es = i * (j - k) / (d - e)   # saturation vapor gradient 
        b_vpd = i * (j - k) / (d - l)   # vpd 
        b_te = i * (r - j) / (s - l)   # equilibrium gradient 
        #bowen = i * (j - k) / (h - l)   # upper and lower arm winter 2007 
        #bowen = i * (q - k) / (r - m)   # equilibrium 1 lower arm 
        #bowen = i * (s - v) / (t - u)   # equilibrium 2 mean upper and lower 
        #bowen = i * (w - j) / (x - l)   # soil temperature and lower arm 
        #bowen = i * (w - k) / (x - m)   # soil temperature and upper arm 
        #bowen = i * (w - k) / (y - m)   # soil temperature and upper arm 
        z = ((n - o) / (1 + b_ea)) / p 
        y = ((n - o) / (1 + b_es)) / p 
        x = ((n - o) / (1 + b_vpd)) / p 
        w = ((n - o) / (1 + b_te)) / p 
 
        BREB_ea.append(z),BREB_es.append(y),BREB_vpd.append(x),BREB_te.append(w) 
 
    return BREB_es, BREB_ea, BREB_vpd, BREB_te 
 
def BS(Rn, meteo, al): 
    # unpack meteorological variables 
    lv = meteo[1] 
    psy = meteo[2] 
    U2 = meteo[3] 
    VPD = meteo[9] 
    slope = meteo[10] 
 
    # calculate evaporation using Brutsaert-Strickler 
    E = [] 
    for i,j,k,l,m,n in zip(psy, slope, Rn, U2, VPD, lv): 
        Ea = (1.313 + 1.381 * l) * m 
        z = (2 * al - 1) * (j / (j + i)) * (k / n) - (i / (j + i)) * Ea 
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        E.append(z) 
 
    return E 
 
def FAO_daily(Rn, GF, meteo): 
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
    psy = meteo[2] 
    U2 = meteo[3] 
    es = meteo[4] 
    emean = meteo[5] 
    emax = meteo[6] 
    emin = meteo[7] 
    ea = meteo[8] 
    VPD = meteo[9] 
    slope = meteo[10] 
     
    # calculate evapotranspiration using FAO Penman-Monteith 
    ET = [] 
    for i,j,k,l,m,n,o in zip(slope, Rn, GF, VPD, tmean, U2, psy): 
        z = (0.408 * i * (j - k) + o *\ 
            (900 / (m + 273)) * n * l) / (i + o * (1 + 0.34 * n)) 
        ET.append(z) 
     
    return ET 
 
def FAO_15min(Uz, Temp, RH, Rn, GF, Pa): 
    # calculate latent heat of vaporization 
    lv = [] 
    for i in Temp: 
        z = 4185.5 * (751.78 - 0.5655 * (i + 273.15)) / 1000000 
        lv.append(z) 
    
    # calculate psychiometric constant 
    psy = [] 
    for i,j in zip(Pa, lv): 
        z = (Cp * i / 10) / (ep * j) 
        psy.append(z) 
 
    # adjust wind speed data to reference height of 2 meter 
    U2 = [] 
    for i in Uz: 
        z = i * (4.87 / np.log(67.8 * WSh - 5.42)) 
        U2.append(z) 
 
    # calculate saturation vapour 
    es = [] 
    for i in Temp: 
        z = 0.6108 * np.exp((17.27 * i) / (273.3 + i)) 
        es.append(z) 
 
    # calculate actual vapour 
    ea = [i / 100 * j for i,j in zip(RH, es)] 
 
    # calculate vapour pressure deficit 
    VPD = [i - j for i,j in zip(es,ea)] 
 
    # calculate slope of saturation avpour 
    slope = [] 
    for i,j in zip(es, Temp): 
        z = (4098 * i) / np.power(j + 273.3, 2) 
        slope.append(z) 
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    # calculate evapotranspiration using FAO Penman-Monteith 
    ET = [] 
    for i,j,k,l,m,n,o in zip(slope, Rn, GF, VPD, Temp, U2, psy): 
        z = (0.408 * i * (j - k) + o * (900 / (m + 273)) * n * l)\ 
            / (i + o * (1 + 0.34 * n)) 
        ET.append(z) 
         
    return ET 
 
def GG(Rn, G, meteo): 
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
    psy = meteo[2] 
    U2 = meteo[3] 
    VPD = meteo[9] 
    slope = meteo[10] 
 
    # calculate evaporation using Granger-Gray 
    E = [] 
    for i,j,k,l,m,n,o in zip(psy, slope, Rn, G, U2, lv, VPD): 
        Ea = (1.313 + 1.381 * m) * o 
        Dp = Ea / (Ea + (k - l)) 
        Gg = 1 / (0.793 + 0.2 * np.exp(4.902 * Dp)) + 0.006 * Dp 
        z = (j * Gg * ((k - l) / n) + i * Gg * Ea) / (j * Gg + i) 
        E.append(z) 
 
    return E 
 
def HS(Rs, meteo): 
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
 
    # calculate evaporation using Hargreaves-Samani 
    E = [] 
    for i,j,k in zip(tmean, Rs, lv): 
        z = 0.0135 * j * (i + 17.8) / k 
        E.append(z) 
 
    return E 
 
def JH(Rs, meteo):     
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
 
    # calculate evaporation using Jensen-Haise 
    E = [] 
    for i,j,k in zip(tmean, lv, Rs): 
        z = 0.025 / j * (k * (i + 3)) 
        E.append(z) 
 
    return E 
 
def MK(Rs, meteo): 
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
    psy = meteo[2] 
    emean = meteo[5] 
    slope = meteo[10] 
 
    # calculate evaporation using Makkink 
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    E = [] 
    for i,j,k,l in zip(psy, slope, Rs, lv): 
        z = 0.65 * (j / (j + i)) * (k / l) 
        #z = 0.61 * (j / (j + i)) * (k / l) - 0.12 
        E.append(z) 
 
    return E 
 
 
def MS(Rn, meteo): 
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
    psy = meteo[2] 
    U2 = meteo[3] 
    VPD = meteo[9] 
    slope = meteo[10] 
     
    # calculate resistance at reference height of 50m 
    rc50 = 1 / pow(0.41, 2) * np.log((50 - 0.67 * h) / (0.123 * h)) *\ 
           np.log((50 - 0.67 * h) / (0.0123 * h)) * (np.log((2 - 0.08)\ 
           / 0.0148) / np.log((50 - 0.08) / 0.0148)) / 86400 
 
    # calculate vapour pressure deficit at reference height of 50m 
    VPD50 = [] 
    for i,j,k,l,m in zip(slope, psy, U2, VPD, Rn): 
        # calculate climatological resistance 
        rclim = 86400 * ((roua * Cp * l) / (i * m)) 
        z = ((302 * (i + j) + 70 * j * k) / (208 * (i + j) + 70 * j * k)) +\ 
            ((1 / rclim) * (((302 * (i + j) + 70 * j * k) / (208 * (i + j) +\ 
            70 * j * k)) * (208 / k) - (302 / k))) 
        VPD50.append(z) 
     
    # calculate evapotranspiration using Matt-Shuttleworth 
    ET = [] 
    for i,j,k,l,m,n,o in zip(psy, slope, Rn, U2, VPD, VPD50, lv): 
        z = (1 / o) *((j * k + (roua * Cp * l * m / rc50) *\ 
            n) / (j + i * (1 + rs * l / rc50))) 
        ET.append(z) 
 
    return ET 
 
def MB(Re, meteo):     
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
 
    # calculate evaporation using McGuiness-Bordne 
    E = [] 
    for i,j,k in zip(tmean, lv, Re): 
        z = 1 / (68 * j) * (k * (i + 5)) 
        E.append(z) 
 
    return E 
 
def Morton(Rn, meteo, penman): 
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
    psy = meteo[2] 
    U2 = meteo[3] 
    es = meteo[4] 
    emean = meteo[5] 
    emax = meteo[6] 
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    emin = meteo[7] 
    ea = meteo[8] 
    VPD = meteo[9] 
    slope = meteo[10] 
    esdew = meteo[13] 
 
    # calculate equilibrium temperature and saturation vapor at equilibrium 
    Te = tool.equitemp(Rn, lv, penman, psy, tmean, ea) 
    esTe = [] 
    for i in Te: 
        z = 6.108 * np.exp((17.27 * i) / (273.3 + i)) 
        esTe.append(z) 
 
    # transform units 
    Rn = [i / 0.0864 for i in Rn] 
    lv = [i / 0.0864 for i in lv] 
    slope = [i * 10 for i in slope] 
    esdew = [i * 10 for i in esdew] 
    es = [i * 10 for i in es] 
    psy = [i * 10 for i in psy] 
 
    # calculate evapotranspiration using Morton CRAE 
    ET = [] 
    for i,j,k,l,m,n,o,p,q,r in zip(lv, Rn, psy, Te, tmean, slope, es, esdew, esTe, ea): 
        psp = 1 / pow((288 - 0.0065 * Ez) / 288, 5.256) 
        stab = 0.28 * (1 + p / o) + j * n / (k / 10 * 0.66 * (1 / psp)\ 
               * pow(psp, 0.5) * fz * (o - p)) 
        fv = pow(psp, 0.5) * fz / stab 
        z = (1 / i) * (j - (k * fv + 4 * epmo * sigma * pow(l + 273, 3))\ 
            * (l - m)) 
        ET.append(z) 
     
    return ET 
 
def Penman(Rn, meteo): 
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
    psy = meteo[2] 
    U2 = meteo[3] 
    VPD = meteo[9] 
    slope = meteo[10] 
 
    # calculate evaporation using Penman 
    E = [] 
    for i,j,k,l,m,n in zip(psy, slope, Rn, U2, VPD, lv): 
        Ea = (1.313 + 1.381 * l) * m 
        z = (j / (j + i)) * (k / n) + (i / (j + i)) * Ea 
        E.append(z) 
     
    return E 
 
def PM(Rn, GF, meteo): 
    # unpack meteorological variables 
    lv = meteo[1] 
    psy = meteo[2] 
    U2 = meteo[3] 
    VPD = meteo[9] 
    slope = meteo[10] 
    ra = meteo[14] 
 
    # calculate evapotranspiration using Penman-Monteith 
    ET = [] 
    for i,j,k,l,m,n,o in zip(psy, slope, Rn, GF, VPD, ra, lv): 
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        z = (1 / o) * ((j * (k - l) + roua * Cp * m / n) / (j + i * (1 + rs /n))) 
        ET.append(z) 
 
    return ET 
 
def PT(Rn, GF, meteo, al): 
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
    psy = meteo[2] 
    emean = meteo[5] 
    slope = meteo[10] 
 
    # calculate evaporation using Priesley-Taylor 
    E = [] 
    for i,j,k,l,m in zip(slope, psy, Rn, GF, lv): 
        #z = al * ((i / (i + j)) * (k / m) - (l / m)) 
        z = al * ((i / (i + j)) * (k - l) / m) 
        E.append(z) 
     
    return E 
 
def SJ(Rn, GF, Pa, Uz, meteo, penman, al): 
    # unpack meteorological variables 
    tmean = meteo[0] 
    lv = meteo[1] 
    psy = meteo[2] 
    U2 = meteo[3] 
    emax = meteo[6] 
    emin = meteo[7] 
    ea = meteo[8] 
    VPD = meteo[9] 
    slope = meteo[10] 
    RHmean = meteo[11] 
     
    # calculate equilibrium temperatur and Priestly-Taylor equilibrium 
    Te = tool.equitemp(Rn, lv, penman, psy, tmean, ea) 
    meteo_Te =  tool.meteo(Te, Te, RHmean, RHmean, Pa, Uz, Te, Te, Te, Te) 
    PTe = PT(Rn, GF, meteo_Te, al) 
 
    # calculate evaporation using Szilagyi-Jozsa 
    E = [] 
    for i,j in zip(PTe, penman): 
        z = (2 * i - j) 
        E.append(z) 
         
    return E 
 
def TW_monthly(T, DayNum, DayNumMonth, MonthNum, YearNum): 
    # calculate photoperiod 
    daylight, omega = [], lat * math.pi / 180 
    for i in DayNum: 
        delta = 0.409 * math.sin(2 * i * math.pi / 365 - 1.39) 
        ws = math.acos(-math.tan(omega) * math.tan(delta)) 
        hours = 24 * ws / math.pi 
        daylight.append(hours) 
 
    # average temperature and photoperiod data per month 
    Tmonth, Tchunk, Lmonth, Lchunk = [], [], [], [] 
    month, Mchunk, year, Ychunk = [], [], [], [] 
    a, b = 0, 0 
    for i,j,k,l,m in zip(T, daylight, MonthNum, YearNum, DayNumMonth): 
        if a == 0: 
            Tchunk.append(i),Lchunk.append(j),Mchunk.append(k),Ychunk.append(l) 
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        elif (len(T) - 1) == a: 
            Tchunk.append(i),Lchunk.append(j),Mchunk.append(k),Ychunk.append(l) 
            z, y = np.nanmean(Tchunk), np.nanmean(Lchunk) 
            w, x = np.nanmean(Mchunk), np.nanmean(Ychunk) 
            Tmonth.append(z), Lmonth.append(y), month.append(w), year.append(x) 
            Tchunk, Lchunk, Mchunk, Ychunk = [], [], [], [] 
        elif (b - m) > 0: 
            z, y = np.nanmean(Tchunk), np.nanmean(Lchunk) 
            w, x = np.nanmean(Mchunk), np.nanmean(Ychunk) 
            Tmonth.append(z), Lmonth.append(y), month.append(w), year.append(x) 
            Tchunk, Lchunk, Mchunk, Ychunk = [], [], [], [] 
            Tchunk.append(i),Lchunk.append(j),Mchunk.append(k),Ychunk.append(l) 
        else: 
            Tchunk.append(i),Lchunk.append(j),Mchunk.append(k),Ychunk.append(l) 
        a += 1 
        b = m 
 
    # assign number of days in a month for the specific months in data 
    daysmonth = [] 
    days_per_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] 
    for i,j in zip(month, year): 
        z = days_per_month[int(i) - 1] 
        if i == 2 and (j % 4 == 0 and j % 100 != 0 or j % 400 == 0): 
            z = 29 
        daysmonth.append(z) 
 
    # calculate heat index 
    Heat = [] 
    for i in Tmonth: 
        z = pow((0.2 * i), 1.514) 
        Heat.append(z) 
    ########## alter if working with data period longer than one year ########## 
    HI = sum(Heat) * 12 / len(Heat) 
 
    # calculate function depended on heat index 
    alpha = (6.75 * pow(10, -7)) * pow(HI, 3) - (7.71 * pow(10, -5)) *\ 
            pow(HI, 2) + (1.7912 * pow(10, -2)) * HI + 0.49239 
 
    # calculate evaporation using Thornthwaite 
    E = [] 
    for i,j,k in zip(Tmonth, Lmonth, daysmonth): 
        if i > 26: 
            z = -415.85 + 32.24 * i - pow((0.43 * i), 2) 
        else: 
            z = 16 * (j / 12) * (k / 30) * pow((10 * i / HI), alpha) 
        E.append(z) 
 
    return E 
 
def TW_daily(T, DayNum, DayNumMonth, MonthNum, YearNum): 
    # calculate photoperiod 
    daylight, omega = [], lat * math.pi / 180 
    for i in DayNum: 
        delta = 0.409 * math.sin(2 * i * math.pi / 365 - 1.39) 
        ws = math.acos(-math.tan(omega) * math.tan(delta)) 
        hours = 24 * ws / math.pi 
        daylight.append(hours) 
 
    # average temperature and photoperiod data per month 
    Tmonth, Tchunk = [], [] 
    a, b = 0, 0 
    for i,j in zip(T, DayNumMonth): 
        if a == 0: 
            Tchunk.append(i) 
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        elif (len(T) - 1) == a: 
            Tchunk.append(i) 
            z = np.nanmean(Tchunk) 
            Tmonth.append(z) 
            Tchunk = [] 
        elif (b - j) > 0: 
            z = np.nanmean(Tchunk) 
            Tmonth.append(z) 
            Tchunk = [] 
            Tchunk.append(i) 
        else: 
            Tchunk.append(i) 
        a += 1 
        b = j 
 
    # assign number of days in a month for the specific months in data 
    daysmonth = [] 
    days_per_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] 
    for i,j in zip(MonthNum, YearNum): 
        z = days_per_month[int(i) - 1] 
        if i == 2 and (j % 4 == 0 and j % 100 != 0 or j % 400 == 0): 
            z = 29 
        daysmonth.append(z) 
 
    # calculate heat index 
    Heat = [] 
    for i in Tmonth: 
        z = pow((0.2 * i), 1.514) 
        Heat.append(z) 
    HI = sum(Heat) * 12 / len(Heat) 
     
    # calculate function depended on heat index 
    alpha = (6.75 * pow(10, -7)) * pow(HI, 3) - (7.71 * pow(10, -5)) *\ 
            pow(HI, 2) + (1.7912 * pow(10, -2)) * HI + 0.49239 
     
    # calculate evaporation using Thornthwaite 
    E = [] 
    for i,j,k in zip(T, daylight, daysmonth): 
        if i > 26: 
            z = (j / (12 * k)) * (-415.85 + 32.24 * i - pow((0.43 * i), 2)) 
        else: 
            z = 16 * (j / (12 * k)) * pow((10 * i / HI), alpha) 
        E.append(z) 
 
    return E 
 
def Turc(Rs, meteo): 
    # unpack meteorological variables 
    tmean = meteo[0] 
    RHmean = meteo[11] 
     
    # calculate evaporation using Turc 
    E = [] 
    for i,j,k in zip(tmean, RHmean, Rs): 
        z = 0.0133 * (23.88 * k + 50) * (i / (i + 15)) + (1 + ((50 - j) / 70)) 
        E.append(z) 
 
    return E 
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A7 Water storage model 
################################################################################ 
################################################################################ 
#### Water storage model                                                                #### 
#### Timothy Tiggeloven                                                                 #### 
#### Evap_WHS.py                                                                        #### 
#### Python 3.5.0                                                                       #### 
####                                                                                     #### 
#### Analyses different methods of evaporation for water storage                      #### 
################################################################################ 
################################################################################ 
 
def WH(evap, prec): 
     
    # Declaration of variables describing the WHS 
    cap_op = 50                 # capacity of open pond [m3] 
    cap_sa = 1098               # capacity of sand dam [m3] 
    catchment_op = 300          # catchment size of open pond [m2] 
    catchment_sa = 5200000000   # catchment size of sand dam [m2] 
    demand = 85.86              # demand of water per week per person [L] 
    depth_op = 2                # depth of open pond [m] 
    depth_sa = 3                # mean depth of sand dam [m] 
    HH = 5.8                    # mean persons per household in Ethiopia 
    inlet_op = cap_op/depth_op  # inlet of open pond [m2] 
    inlet_sa = cap_sa/depth_sa  # inlet of sand dam [m2] 
    num_op = 10                 # number of households that use open pond 
    num_sa = 1100               # number of people that use sand dam 
    ROC = 0.58                  # run-off coefficient 
    sand_evap = 0.9             # depth until which evaporation occurs [m] 
    storage_op = cap_op         # set initial storage of open pond [m3] 
    storage_sa = cap_sa         # set initial storage of sand dam [m3] 
    threshold = 0.01            # minimum rainfall before run-off occurs [m3] 
 
    # calculate usage of WHS in m3 
    usage_op = (HH * num_op) * (demand / 7) / 1000 
    usage_sa = (num_sa) * (demand / 7) / 1000 
 
    # capacity where evaporation does not occur in sand dam 
    cap_sand_evap = inlet_sa * (depth_sa - sand_evap) 
 
    total_op, total_sa = 0, 0 
    E_list_op, E_list_sa, sand_lim = [], [], [] 
    store_list_op, store_list_sa, usage_list_op, usage_list_sa = [], [], [], [] 
    # calculate storage and usage of WHS 
    for i,j in zip(evap, prec): 
        E = i / 1000 
        pr = j / 1000 
 
        # channel precipitation 
        storage_op += inlet_op * pr 
        storage_sa += inlet_sa * pr 
 
        # run-off 
        if pr > threshold: 
            storage_op += catchment_op * pr * ROC 
            storage_sa += catchment_sa * pr * ROC 
 
        # evaporation open pond 
        E_op = E * inlet_op 
        storage_op -= E_op 
        total_op += E_op 
 
        # evaporation sand dam 
        E_sa = 0 
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        if storage_sa > cap_sand_evap: 
            diff = storage_sa - cap_sand_evap 
            if diff < E: 
                E_sa = diff * inlet_sa 
                storage_sa -= E_sa 
                total_sa += E_sa 
            else: 
                E_sa = E * inlet_sa 
                storage_sa -= E_sa 
                total_sa += E_sa 
 
        # check capacity, depletion and usage for open pond 
        if storage_op > cap_op: 
            storage_op = cap_op 
            harvest_op = usage_op 
        elif storage_op < 0: 
            storage_op, harvest_op = 0, 0 
        elif storage_op < usage_op: 
            harvest_op = storage_op 
            storage_op = 0 
        else: 
            storage_op -= usage_op 
            harvest_op =  usage_op 
 
        # check capacity, depletion and usage for sand dam 
        if storage_sa > cap_sa: 
            storage_sa = cap_sa 
            harvest_sa = usage_sa 
        elif storage_sa < 0: 
            storage_sa, harvest_sa = 0, 0 
        elif storage_sa < usage_sa: 
            harvest_sa = storage_sa 
            storage_sa = 0 
        else: 
            storage_sa -= usage_sa 
            harvest_sa =  usage_sa 
                 
        store_list_op.append(storage_op), usage_list_op.append(harvest_op) 
        store_list_sa.append(storage_sa), usage_list_sa.append(harvest_sa) 
        E_list_op.append(E_op), E_list_sa.append(E_sa) 
        sand_lim.append(cap_sand_evap) 
 
    # calculate total percentage evaporative fracture of WHS 
    op_WHS = total_op / cap_op 
    sa_WHS = total_sa / cap_sa 
         
    return store_list_op, usage_list_op, store_list_sa, usage_list_sa,\ 
           sand_lim, total_op, total_sa, E_list_op, E_list_sa, op_WHS, sa_WHS 
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A8 Pyplot script 
################################################################################ 
################################################################################ 
#### Evaporation pyplots                                                                #### 
#### Timothy Tiggeloven                                                                 #### 
#### Evap_plots.py                                                                      #### 
#### Python 3.5.0                                                                       #### 
####                                                                                     #### 
#### Plots data for the evaporation model and water storage model                     #### 
################################################################################ 
################################################################################ 
 
# read modules 
import csv 
import datetime 
import math 
import matplotlib.dates as dt 
import matplotlib.pyplot as plt 
import numpy as np 
import os 
import pandas as pd 
import seaborn as sns 
 
curdir = os.getcwd() 
 
def Diurnal(t, Rn, G, lv, H): 
    ax=plt.gca() 
    xfmt = dt.DateFormatter('%H') 
    ax.xaxis.set_major_formatter(xfmt) 
    plt.plot_date(t, Rn,'-', label='Net radiation') 
    plt.plot_date(t, G,'-', label='Soil heat') 
    plt.plot_date(t, lv,'-', label='Latent heat') 
    plt.plot_date(t, H,'-', label='Sensible heat') 
    plt.xlabel('Time', fontsize=18) 
    plt.ylabel('Energy [$MJ/m^2$]', fontsize=18) 
    plt.legend(fontsize=18, loc='upper left') 
 
    plt.xticks(fontsize=18) 
    plt.tick_params(axis='both', labelsize=18) 
 
    plt.savefig(curdir+"//Diurnal_plot.png", bbox_inches='tight', dpi=300) 
    plt.show() 
 
def Corr_heatmap(corr, name): 
    # Generate a mask for the upper triangle 
    mask = np.zeros_like(corr, dtype=np.bool) 
    mask[np.triu_indices_from(mask)] = True 
 
    # Set up the matplotlib figure 
    fig, ax = plt.subplots(figsize=(11, 9)) 
 
    # Generate a custom diverging colormap 
    cmap = sns.diverging_palette(220, 20, sep=50, n=1, as_cmap=True) 
 
    # Draw the heatmap with the mask and correct aspect ratio 
    sns.set(font_scale=3) 
    g = sns.heatmap(corr, mask=mask, cmap=cmap, vmax=1, vmin=0, square=True, 
                linewidths=.5, cbar_kws={"shrink": .5}, ax=ax) 
 
    g.set_xticklabels(g.get_xticklabels(), rotation = 270, fontsize = 23) 
    g.set_yticklabels(g.get_yticklabels(), rotation = 0, fontsize = 23) 
     
    fig.savefig(curdir+"//Heatmap_%s.png" % name, bbox_inches='tight', dpi=300) 
    plt.show() 
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    #xticklabels=2, yticklabels=2, 
 
def TREGplot(T1, T2, n1, n2): 
    v1, v2 = np.array(T1), np.array(T2) 
    m1, b1 = np.polyfit(v1, v2, 1) 
    eq1 = 'y = ' + str(round(m1,4)) + '$x$' ' + ' + str(round(b1,4)) 
    corr1 = np.corrcoef(v1, v2)[0,1] 
    Rsq1 = '$R^2$ = ' + str(round(pow(corr1,2),2)) 
     
    fig = plt.figure() 
    ax1 = fig.add_subplot(111) 
    ax1.plot(T1, T2, '.') 
    ax1.plot(v1, m1*v1+b1, '-') 
    ax1.plot([18, 25], [18, 25], ls="--", c=".3") 
    ax1.set_ylim(19,25) 
    ax1.set_xlim(19,25) 
    ax1.text(19.5, 24.5, eq1) 
    ax1.text(19.5, 24.2, Rsq1) 
    ax1.set_xlabel('%s [$ºC$]' % n1) 
    ax1.set_ylabel('%s [$ºC$]' % n2) 
 
    fig.savefig(curdir+"//Te_reg.png", bbox_inches='tight', dpi=300) 
    plt.show() 
 
def RnREGplot(T1, T2, n1, n2): 
    v1, v2 = np.array(T1), np.array(T2) 
    m1, b1 = np.polyfit(v1, v2, 1) 
    eq1 = 'y = ' + str(round(m1,4)) + '$x$' ' + ' + str(round(b1,4)) 
    corr1 = np.corrcoef(v1, v2)[0,1] 
    Rsq1 = '$R^2$ = ' + str(round(pow(corr1,2),2)) 
     
    fig = plt.figure() 
    ax1 = fig.add_subplot(111) 
    ax1.plot(T1, T2, '.') 
    ax1.plot(v1, m1*v1+b1, '-') 
    ax1.plot([0, 14], [0, 14], ls="--", c=".3") 
    ax1.set_ylim(4,14) 
    ax1.set_xlim(4,14) 
    ax1.text(4.3, 13.5, eq1) 
    ax1.text(4.3, 13, Rsq1) 
    ax1.set_xlabel('%s [$MJ/m^2$]' % n1, ) 
    ax1.set_ylabel('%s [$MJ/m^2$]' % n2) 
 
    fig.savefig(curdir+"//Rn_reg.png", bbox_inches='tight', dpi=300) 
    plt.show() 
 
def REGplot(T1, T2, n1, n2, R1, R2, n3, n4): 
    v1, v2 = np.array(T1), np.array(T2) 
    m1, b1 = np.polyfit(v1, v2, 1) 
    eq1 = 'y = ' + str(round(m1,4)) + '$x$' ' + ' + str(round(b1,4)) 
    corr1 = np.corrcoef(v1, v2)[0,1] 
    Rsq1 = '$R^2$ = ' + str(round(pow(corr1,2),2)) 
 
    v3, v4 = np.array(R1), np.array(R2) 
    m2, b2 = np.polyfit(v3, v4, 1) 
    eq2 = 'y = ' + str(round(m2,4)) + '$x$' ' + ' + str(round(b2,4)) 
    corr2 = np.corrcoef(v3, v4)[0,1] 
    Rsq2 = '$R^2$ = ' + str(round(pow(corr2,2),2)) 
     
    fig = plt.figure() 
    ax1 = fig.add_subplot(121) 
    ax1.plot(T1, T2, '.') 
    ax1.plot(v1, m1*v1+b1, '-') 
    ax1.plot([18, 25], [18, 25], ls="--", c=".3") 
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    ax1.set_ylim(19,25) 
    ax1.set_xlim(19,25) 
    ax1.text(19.5, 24.5, eq1, fontsize=18) 
    ax1.text(19.5, 24.2, Rsq1, fontsize=18) 
    ax1.set_xlabel('%s [º$C$]' % n1, fontsize=18) 
    ax1.set_ylabel('%s [º$C$]' % n2, fontsize=18) 
    ax1.tick_params(axis='both', labelsize=18) 
 
    ax2 = fig.add_subplot(122) 
    ax2.plot(R1, R2, '.') 
    ax2.plot(v3, m2*v3+b2, '-') 
    ax2.plot([0, 14], [0, 14], ls="--", c=".3") 
    ax2.set_ylim(4,14) 
    ax2.set_xlim(4,14) 
    ax2.text(4.3, 13.5, eq2, fontsize=18) 
    ax2.text(4.3, 13, Rsq2, fontsize=18) 
    ax2.set_xlabel('%s [$MJ/m^2$]' % n3, fontsize=18) 
    ax2.set_ylabel('%s [$MJ/m^2$]' % n4, fontsize=18) 
    ax2.tick_params(axis='both', labelsize=18) 
     
    fig.savefig(curdir+"//reg.png", bbox_inches='tight', dpi=300) 
    plt.show() 
 
def EBCplot(RGe, EH1, EH2, EH3, EH4, EH5, EH6, EH7, EH8, n1, n2, n3, n4,\ 
            n5, n6, n7, n8, num): 
    x = np.array(RGe) 
    y1, y2, y3, y4 = np.array(EH1), np.array(EH2), np.array(EH3), np.array(EH4) 
    y5, y6, y7, y8 = np.array(EH5), np.array(EH6), np.array(EH7), np.array(EH8) 
    m1, b1 = np.polyfit(x, y1, 1) 
    m2, b2 = np.polyfit(x, y2, 1) 
    m3, b3 = np.polyfit(x, y3, 1) 
    m4, b4 = np.polyfit(x, y4, 1) 
    m5, b5 = np.polyfit(x, y5, 1) 
    m6, b6 = np.polyfit(x, y6, 1) 
    m7, b7 = np.polyfit(x, y7, 1) 
    m8, b8 = np.polyfit(x, y8, 1) 
    eq1 = 'y = ' + str(round(m1,2)) + '$x$' ' + ' + str(round(b1,2)) 
    eq2 = 'y = ' + str(round(m2,2)) + '$x$' ' + ' + str(round(b2,2)) 
    eq3 = 'y = ' + str(round(m3,2)) + '$x$' ' + ' + str(round(b3,2)) 
    eq4 = 'y = ' + str(round(m4,2)) + '$x$' ' + ' + str(round(b4,2)) 
    eq5 = 'y = ' + str(round(m5,2)) + '$x$' ' + ' + str(round(b5,2)) 
    eq6 = 'y = ' + str(round(m6,2)) + '$x$' ' + ' + str(round(b6,2)) 
    eq7 = 'y = ' + str(round(m7,2)) + '$x$' ' + ' + str(round(b7,2)) 
    eq8 = 'y = ' + str(round(m8,2)) + '$x$' ' + ' + str(round(b8,2)) 
    corr1 = np.corrcoef(x, y1)[0,1] 
    corr2 = np.corrcoef(x, y2)[0,1] 
    corr3 = np.corrcoef(x, y3)[0,1] 
    corr4 = np.corrcoef(x, y4)[0,1] 
    corr5 = np.corrcoef(x, y5)[0,1] 
    corr6 = np.corrcoef(x, y6)[0,1] 
    corr7 = np.corrcoef(x, y7)[0,1] 
    corr8 = np.corrcoef(x, y8)[0,1] 
    Rsq1 = '$R^2$ = ' + str(round(pow(corr1,2),2)) 
    Rsq2 = '$R^2$ = ' + str(round(pow(corr2,2),2)) 
    Rsq3 = '$R^2$ = ' + str(round(pow(corr3,2),2)) 
    Rsq4 = '$R^2$ = ' + str(round(pow(corr4,2),2)) 
    Rsq5 = '$R^2$ = ' + str(round(pow(corr5,2),2)) 
    Rsq6 = '$R^2$ = ' + str(round(pow(corr6,2),2)) 
    Rsq7 = '$R^2$ = ' + str(round(pow(corr7,2),2)) 
    Rsq8 = '$R^2$ = ' + str(round(pow(corr8,2),2)) 
     
    fig = plt.figure() 
    ax1 = fig.add_subplot(241) 
    ax1.plot(RGe, EH1, '.') 
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    ax1.plot(x, m1*x+b1, '-') 
    ax1.plot([3, 18], [3, 18], ls="--", c=".3") 
    ax1.set_ylim(3,18) 
    ax1.set_xlim(3,18) 
    ax1.text(3.1, 17.1, eq1, fontsize=18) 
    ax1.text(3.1, 15.9, Rsq1, fontsize=18) 
    ax1.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18) 
    ax1.set_ylabel('%s + H $[MJ/m^2]$' % n1, fontsize=18) 
    ax1.tick_params(axis='both', labelsize=18) 
 
    ax2 = fig.add_subplot(242) 
    ax2.plot(RGe, EH2, '.') 
    ax2.plot(x, m2*x+b2, '-') 
    ax2.plot([3, 18], [3, 18], ls="--", c=".3") 
    ax2.set_ylim(3,18) 
    ax2.set_xlim(3,18) 
    ax2.text(3.1, 17.1, eq2, fontsize=18) 
    ax2.text(3.1, 15.9, Rsq2, fontsize=18) 
    ax2.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18) 
    ax2.set_ylabel('%s + H $[MJ/m^2]$' % n2, fontsize=18) 
    ax2.tick_params(axis='both', labelsize=18) 
 
    ax3 = fig.add_subplot(243) 
    ax3.plot(RGe, EH3, '.') 
    ax3.plot(x, m3*x+b3, '-') 
    ax3.plot([3, 18], [3, 18], ls="--", c=".3") 
    ax3.set_ylim(3,18) 
    ax3.set_xlim(3,18) 
    ax3.text(3.1, 17.1, eq3, fontsize=18) 
    ax3.text(3.1, 15.9, Rsq3, fontsize=18) 
    ax3.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18) 
    ax3.set_ylabel('%s + H $[MJ/m^2]$' % n3, fontsize=18) 
    ax3.tick_params(axis='both', labelsize=18) 
 
    ax4 = fig.add_subplot(244) 
    ax4.plot(RGe, EH4, '.') 
    ax4.plot(x, m4*x+b4, '-') 
    ax4.plot([3, 18], [3, 18], ls="--", c=".3") 
    ax4.set_ylim(3,18) 
    ax4.set_xlim(3,18) 
    ax4.text(3.1, 17.1, eq4, fontsize=18) 
    ax4.text(3.1, 15.9, Rsq4, fontsize=18) 
    ax4.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18) 
    ax4.set_ylabel('%s + H $[MJ/m^2]$' % n4, fontsize=18) 
    ax4.tick_params(axis='both', labelsize=18) 
 
    ax5 = fig.add_subplot(245) 
    ax5.plot(RGe, EH5, '.') 
    ax5.plot(x, m5*x+b5, '-') 
    ax5.plot([3, 18], [3, 18], ls="--", c=".3") 
    ax5.set_ylim(3,18) 
    ax5.set_xlim(3,18) 
    ax5.text(3.1, 17.1, eq5, fontsize=18) 
    ax5.text(3.1, 15.9, Rsq5, fontsize=18) 
    ax5.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18) 
    ax5.set_ylabel('%s + H $[MJ/m^2]$' % n5, fontsize=18) 
    ax5.tick_params(axis='both', labelsize=18) 
 
    ax6 = fig.add_subplot(246) 
    ax6.plot(RGe, EH6, '.') 
    ax6.plot(x, m6*x+b6, '-') 
    ax6.plot([3, 18], [3, 18], ls="--", c=".3") 
    ax6.set_ylim(3,18) 
    ax6.set_xlim(3,18) 
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    ax6.text(3.1, 17.1, eq6, fontsize=18) 
    ax6.text(3.1, 15.9, Rsq6, fontsize=18) 
    ax6.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18) 
    ax6.set_ylabel('%s + H $[MJ/m^2]$' % n6, fontsize=18) 
    ax6.tick_params(axis='both', labelsize=18) 
 
    ax7 = fig.add_subplot(247) 
    ax7.plot(RGe, EH7, '.') 
    ax7.plot(x, m7*x+b7, '-') 
    ax7.plot([3, 18], [3, 18], ls="--", c=".3") 
    ax7.set_ylim(3,18) 
    ax7.set_xlim(3,18) 
    ax7.text(3.1, 17.1, eq7, fontsize=18) 
    ax7.text(3.1, 15.9, Rsq7, fontsize=18) 
    ax7.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18) 
    ax7.set_ylabel('%s + H $[MJ/m^2]$' % n7, fontsize=18) 
    ax7.tick_params(axis='both', labelsize=18) 
 
    ax8 = fig.add_subplot(248) 
    ax8.plot(RGe, EH8, '.') 
    ax8.plot(x, m8*x+b8, '-') 
    ax8.plot([3, 18], [3, 18], ls="--", c=".3") 
    ax8.set_ylim(3,18) 
    ax8.set_xlim(3,18) 
    ax8.text(3.1, 17.1, eq8, fontsize=18) 
    ax8.text(3.1, 15.9, Rsq8, fontsize=18) 
    ax8.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18) 
    ax8.set_ylabel('%s + H $[MJ/m^2]$' % n8, fontsize=18) 
    ax8.tick_params(axis='both', labelsize=18) 
 
    fig.savefig(curdir+"//EB_reg%s.png" % num, bbox_inches='tight', dpi=300) 
    plt.show() 
 
def EBCvsALLplot(TW, Penman, FAOday, PT, PM, MK, BS, GG, BC, Turc, MS, JH, MB,\ 
                 HS, BREB, SJ, Mort, EBC, t): 
    fig = plt.figure() 
    ax1 = fig.add_subplot(411) 
    ax1.plot_date(t, EBC, 'black', label='EBC') 
    ax1.plot_date(t, TW, 'b-', label='Thornthwaite') 
    ax1.plot_date(t, BC, 'r-', label='Blaney-Criddle') 
    ax1.plot_date(t, MB, 'g-', label='McGuiness-Bordne') 
    ax1.set_xticklabels([], visible=False) 
    ax1.set_ylim(0,7) 
    ax1.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=18) 
    ax1.tick_params(axis='both', labelsize=18) 
 
    ax2 = fig.add_subplot(412) 
    ax2.plot_date(t, EBC, 'black', label='EBC') 
    ax2.plot_date(t, Turc, 'b-', label='Turc') 
    ax2.plot_date(t, HS, 'r-', label='Hargreaves-Samani') 
    ax2.plot_date(t, MK, 'g-', label='Makkink') 
    ax2.plot_date(t, PT, 'y-', label='Priesley-Taylor') 
    ax2.plot_date(t, BREB, 'c-', label='BREB') 
    ax2.set_xticklabels([], visible=False) 
    ax2.set_ylim(0,7) 
    ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=18) 
    ax2.tick_params(axis='both', labelsize=18) 
 
    ax3 = fig.add_subplot(413) 
    ax3.plot_date(t, EBC, 'black', label='EBC') 
    ax3.plot_date(t, Penman, 'b-', label='Penman') 
    ax3.plot_date(t, PM, 'r-', label='Penman-Monteith') 
    ax3.plot_date(t, FAOday, 'g-', label='FAO PM') 
    ax3.plot_date(t, MS, 'y-', label='Matt-Shuttleworth') 
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    ax3.set_xticklabels([], visible=False) 
    ax3.set_ylim(0,7) 
    ax3.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=18) 
    ax3.tick_params(axis='both', labelsize=18) 
 
    ax4 = fig.add_subplot(414) 
    ax4.plot_date(t, EBC, 'black', label='EBC') 
    ax4.plot_date(t, BS, 'b-', label='Brutsaert-Strickler') 
    ax4.plot_date(t, SJ, 'r-', label='Szilagyi-Jozsa') 
    ax4.plot_date(t, GG, 'g-', label='Granger-Gray') 
    ax4.plot_date(t, Mort, 'y-', label='Morton CRAE') 
    ax4.set_ylim(0,7) 
    ax4.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=18) 
    ax4.tick_params(axis='both', labelsize=18) 
    plt.xticks(fontsize=18) 
 
    fig.text(0.04, 0.5, 'Evaporation [$mm/day$]', va='center',\ 
             rotation='vertical', fontsize=20)     
    fig.savefig(curdir+"//EBC_ALL.png", bbox_inches='tight', dpi=300) 
    plt.show() 
 
def rainplot(prec, temp, t): 
    width = 0.8 
    x = np.asarray(t) 
    fig = plt.figure() 
    ax1 = fig.add_subplot(111) 
    plt.gca().xaxis.set_major_formatter(dt.DateFormatter('%d-%m-%y')) 
    plt.gca().xaxis.set_major_locator(dt.DayLocator()) 
    plt.xticks(np.arange(min(x), max(x)+1, 5.0)) 
    plt.xticks(rotation=45, fontsize=18) 
     
    ax1.bar(x, prec, width, label='Precipitation') 
    ax1.set_ylabel('Rainfall [$mm$]', fontsize=18) 
    legend = ax1.legend(loc='upper left', shadow=True) 
    handles, labels = ax1.get_legend_handles_labels() 
    ax1.legend(handles, labels, loc='upper left', fontsize=18) 
    plt.tick_params(axis='both', labelsize=18) 
     
    ax2 = ax1.twinx() 
    ax2.step(x, temp, 'r-', where='post', label='Temperature') 
    ax2.set_ylabel('Temperature [º$C$]', fontsize=18) 
    ax2.set_ylim(15, 27) 
    legend = ax2.legend(loc='upper right', shadow=True) 
    handles, labels = ax2.get_legend_handles_labels() 
    ax2.legend(handles, labels, loc='upper right', fontsize=18) 
    plt.tick_params(axis='both', labelsize=18) 
 
    fig.set_size_inches(18, 10) 
    fig.savefig(curdir+"//Rainplot.png", bbox_inches='tight', dpi=300) 
    plt.show() 
 
def WHSplot(prec, st1, st2, lim, t): 
    width = 0.8 
    x = np.asarray(t) 
    fig = plt.figure() 
    ax1 = fig.add_subplot(121) 
    plt.gca().xaxis.set_major_formatter(dt.DateFormatter('%d-%m-%y')) 
    plt.gca().xaxis.set_major_locator(dt.DayLocator()) 
    plt.xticks(np.arange(min(x), max(x)+1, 5.0)) 
    plt.xticks(rotation=45) 
     
    ax1.bar(x, prec, width, label='Precipitation') 
    ax1.set_ylabel('Rainfall [$mm$]', fontsize=18) 
    legend = ax1.legend(loc='upper left', shadow=True) 
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    handles, labels = ax1.get_legend_handles_labels() 
    ax1.legend(handles, labels, loc='upper left', fontsize=18) 
    ax1.tick_params(axis='both', labelsize=18) 
     
    ax2 = ax1.twinx() 
    ax2.plot(x, st1, 'y', label='Water stored') 
    ax2.set_ylabel('Storage [$m^3$]', fontsize=18) 
    ax2.set_ylim(20, 50) 
    legend = ax2.legend(loc='upper left', shadow=True) 
    handles, labels = ax2.get_legend_handles_labels() 
    ax2.legend(handles, labels, loc='upper right', fontsize=18) 
    ax2.tick_params(axis='both', labelsize=18) 
 
    ax3 = fig.add_subplot(122) 
    plt.gca().xaxis.set_major_formatter(dt.DateFormatter('%d-%m-%y')) 
    plt.gca().xaxis.set_major_locator(dt.DayLocator()) 
    plt.xticks(np.arange(min(x), max(x)+1, 5.0)) 
    plt.xticks(rotation=45, fontsize=18) 
     
    ax3.bar(x, prec, width, label='Precipitation') 
    ax3.set_ylabel('Rainfall [$mm$]', fontsize=18) 
    legend = ax3.legend(loc='upper left', shadow=True) 
    handles, labels = ax3.get_legend_handles_labels() 
    ax3.legend(handles, labels, loc='upper left', fontsize=18) 
    ax3.tick_params(axis='both', labelsize=18) 
     
    ax4 = ax3.twinx() 
    ax4.plot(x, st2, 'y-', label='Water stored') 
    ax4.plot(x, lim, 'r-') 
    ax4.set_ylabel('Storage [$m^3$]', fontsize=18) 
    legend = ax4.legend(loc='upper left', shadow=True) 
    handles, labels = ax4.get_legend_handles_labels() 
    ax4.legend(handles, labels, loc='upper right', fontsize=18) 
    ax4.tick_params(axis='both', labelsize=18) 
 
    fig.savefig(curdir+"//WHS_op.png", bbox_inches='tight', dpi=300) 
    plt.show() 
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