

Calculating potential of water harvesting from road catchments

- Water harvesting is the collection of runoff for a productive use (Critchley and Siegert, 1999)
- Unless it is properly managed, concentrated water from road catchments can be damaging
- Some of the negative effects of concentrated water emanating from culverts and bridges are:
 - Downstream erosion of land leading to gully formation
 Downstream deposition of sediments
 - Damaging road structures, mainly hydraulic structures

Fig. Example of gully formation downstream of a road along the Freweyni to Abreha-we-Atsibha road route

- With proper planning and management, concentrated water from road catchments could be utilized for different agricultural uses:
 - Diverted to farmlands for supplemental irrigation
 - Channelled to deep trenches, percolation ponds, etc. for ground water recharge
- With known water potential to harvest from road catchments, it would be possible to manage the available water for different water uses and to size different water harvesting systems.

Calculating potential of water harvesting form road catchments

 The Runoff Volume Equation for calculating the potential of water harvesting (m³) is

V = C * P * A * E

Where, V = is potential of water harvesting (m³) C = weighted runoff coefficient for the catchment area P = Dependable annual rainfall, usually 80% (m) E = Efficiency factor for accounting losses,

usually taken 0.7 (Danida, 2006)

Water losses could be due to evaporation and seepage

Estimation of annual dependable rainfall

- Requires records of annual precipitation from meteorological station/s nearby to the road
- Determine the most probable annual rainfall for the area
- Nowadays 80% of dependable rainfall is taken
- Annual rainfall records arranged in descending order, and ranked from 1 to n, in which n belongs to the number of annual rainfall records
- Probability of exceedance computed using probability distributions, for example, Weibul formula

•
$$P = m/(n+1)$$

where m is the rank of each rainfall for a given year based on ranking on descending order

Calculating potential of water harvesting from road catchments

Example: A	Annual	rainfall	records	for the	Freweyni	Station,	Tigray
						1	

Year	Rainfall (mm)
2001	778.0
2002	405.2
2003	466.9
2004	604.6
2005	341.9
2006	642.0
2007	537.0
2008	567.6
2009	306.7
2010	670.5
2011	623.6
2012	549.0

			Probability of			
	Rainfal		exceedance =			
Year	I (mm)	Rank	m/(n+m)			
2001	778.0	1	0.08			
2010	670.5	2	0.15			
2006	642.0	3	0.23			
2011	623.6	4	0.31			
2004	604.6	5	0.38			
2008	567.6	6	0.46			
2012	549.0	7	0.54			
2007	537.0	8	0.62			
2003	466.9	9	0.69			
2002	405.2	10	0.77			
2005	341.9	11	0.85			
2009	306.7	12	0.92			
		80% dep.	380			

Determination of runoff coefficient

- Runoff coefficient is dimensionless that relates runoff to precipitation
- Runoff coefficient depend on land use, slope, soil type, etc.
- Runoff coefficient is determined for various land uses or using known slope and soil hydrologic group
- The soil hydrologic group describes the rate of water infiltration and depends on soil type

Table 5-10:	Typical	Hydrologic Soil	s Groups for	Ethiopia
-------------	---------	-----------------	--------------	----------

Soil Types	Hydrologic Soil Group
Orthic Acrisols	В
Chromic Cambisols	В
Dystric Cambisols	В
Eutric Cambisols	В
Humic Cambisols	С
Calcic Cambisols	В
Vertic Cambisols	В
Calcic Chernozems	В
Rendzinas	D
	Soil TypesOrthic AcrisolsChromic CambisolsDystric CambisolsEutric CambisolsHumic CambisolsCalcic CambisolsVertic CambisolsCalcic ChernozemsRendzinas

Source: Drainage Design Manual (ERA, 2013)

Determination of runoff coefficient

Table 5-5: Recommended Runoff Coefficient C for Pervious Surfaces by Selected Hydrologic Soil Groupings and Slope Ranges

Torrain Type	Soil Type					
Terrain Type	А	В	С	D		
Flat, <2%	0.04-0.09	0.07-0.12	0.11-0.16	0.15-0.20		
Rolling, 2-6%	0.09-0.14	0.12-0.17	0.16-0.21	0.20-0.25		
Mountain, 6-15%	0.13-0.18	0.18-0.24	0.23-0.31	0.28-0.38		
Escarpment, >15%	0.18-0.22	0.24-0.30	0.30-0.40	0.38-0.48		

Weighted C =
$$\frac{C1 * A1 + C2 * A2 + \dots Cn * An}{A1 + A2 + \dots An}$$

Determination of runoff coefficient

Table 5-6: Recommended Runoff Coefficient C for Various Land Use

Description of Area	Runoff Coefficients
Business: Downtown areas	0.70-0.95
Neighborhood areas	0.50-0.70
Residential: Single-family areas	0.30-0.50
Residential: Multi units, detached	0.40-0.60
Residential: Multi units, attached	0.60-0.75
Suburban	0.25-0.40
Residential (0.5 hectare lots or more)	0.30-0.45
Apartment dwelling areas	0.50-0.70
Industrial: Light areas	0.50-0.80
Industrial: Heavy areas	0.60-0.90
Parks, cemeteries	0.10-0.25
Playgrounds	0.20-0.40
Railroad yard areas	0.20-0.40
Unimproved areas	0.10-0.30

(Source: Hydrology, Federal Highway Administration, HEC No. 19, 1984)

Example: water harvesting potential from road catchments at the outlet of 92 culverts/box bridges along the Freweyni to Abreha-we-Atsibha route in Tigray, total potential of water harvesting is 1.34 Million cubic meter.

Calculating potential of water harvesting from road catchments

General steps

- Delineate the catchment area using, e.g. arc-hydro, ArcSWAT, using Google Earth (identification of water-divide based on elevation profile)
- Determine the area of each land use in the catchment
- ✓ Estimate runoff coefficient
- ✓ Estimate annual dependable rainfall
- ✓ Finally, determine the runoff volume using the Runoff volume Equation

Calculating peak discharge at culvert/bridge outlets

- Peak discharge is used for sizing the spillway of a water storage structure such as ponds.
- In the absence of measured data, peak discharge is usually estimate using:
 - \checkmark The **rational method** (catchment area <50 ha)
 - The SCS curve number method (catchment area >50 ha)
- Peak discharge using the rational method is estimated as:

Q = 0.00278 CIA

- Where, Q: is maximum discharge (m^3/s)
 - C: is runoff coefficient
 - I: is average rainfall intensity for duration equal to time of concentration, mm/hr
 - A: is catchment area, in ha

- Determine the catchment area in hectares
- Determine the time of concentration, with consideration for future characteristics of the catchment

$$T_C = \frac{1}{3000} * \left(\frac{L}{S^{1/2}}\right)^{0.77}$$

where Tc : is time of concentration in hours L : is hydraulic length of the catchment (m), S is average slope of the catchment

Determine rainfall intensity using the Intensity-Duration Frequency (IDF) charts for a given region

 Time of concentration is the time taken for water to move along the longest path in the catchment

- Rainfall intensity depends on Tc and return period/design period
- Design period depends on the type of structure

Type of structure	Return period (years
Highway culverts:	
Low traffic	5-10
Intermediate traffic	10-25
High traffic	50-100
Highway bridges Secondary system Primary system	10–50 50–100
Urban drainage Storm sewers in small cities Storm sewers in large cities	2–25 25–50
Airfields Low traffic Intermediate traffic High traffic	5–10 10–25 50–100

IDF curves for different parts of Ethiopia

Meteorological Region	Station	Years of Record	Meteorological Region	Station	Years of Record
	Axum	17		Bedele	39
A1	Mekele	46		Gore	56
	Maychew	32		Nekempte	40
	Gondar	52		Jima	54
	Debre Tabor	15	в	Arba Minch	23
	Bahir Dar	45		Sodo	49
A2	Debre Markos	55		Awasa	36
	Fitche	44		Kombolcha	57
	Addis Ababa	57	С	Woldiya	29
	Debre Zeit	55		Sirinka	27
	Nazareth		DI	Gode	33*
Δ3	Kulumsa	43	DI	Kebri Dihar	40
	Robe/Bale	29		Kibre Mengist	33
	Metehara	24	D2	Negele	51
A4	Dire Dawa	58		Moyale	29
	Mieso	42		Yabelo	34

Calculating Peak discharge using Rational method

 Rainfall intensity is determined based design return period and calculated time of concentration for a catchment

Figure 5-12: Typical Rainfall Intensity Duration Frequency Curve

Design considerations for water conveyance/channel

- ✓ Amount of water/ peak discharge
- \checkmark Terrain slope affecting speed of water
- \checkmark Alignment of the channel
- \checkmark Stability of channel, earthen or lined channel
- Shape of the channel (e.g. rectangular, trapezoidal, etc.)
- \checkmark Minimum speed of water to avoid siltation
- ✓ Channel surface roughness
- ✓ Free board
- ✓ Size of the channel (Design ??)

Design considerations for diversion channels from culverts

Design discharge for sizing channels

- Estimate using the rational method
- ✓ Calculate from existing culverts/bridges, i.e.
- ✓ Q = A.V, where A cross-sectional area of the culvert, V is velocity of flow
- Determine velocity of flow using flow measurements techniques (e.g. current meter, floating techniques)

Thank you!