
Evaporation	and	water	storage	in	semi-arid	
region	of	Kitui,	Kenya	
Master	thesis	Hydrology	

Name:																										Timothy	Tiggeloven	
Student	number:							2506768	
Supervisor:																		Ralph	Lasage	
Date:																												19-07-2017	

II

Abstract
In the near future climate change is expected to increase the severity of droughts in
semi-arid regions. Moreover rainy seasons are expected to become shorter and
more intense. Subsequently, water stress will increase, as inhabitants are dependent
on rain-fed agriculture. Recent examples of increased water stress are the droughts
in the Horn of Africa. Water harvesting is showing a potential adaptation measure to
cope with the expected increase in water stress. In Kitui, Kenya water harvesting
systems like sand dams, cisterns and open ponds are used to harvest water. Little is
known about the influence of evaporation on these water harvesting systems. In this
research sixteen methods of evaporation are compared with the residual of the
energy balance and six methods are analyzed for their influence of modeled water
harvesting systems (i.e. open pond and sand dam). The Priesley-Taylor method
shows the best results (r2 of 0.99, Nash-Sutcliffe efficiency of 0.78). Other methods
showing agreeable results are Granger-Gray, Morton’s CRAE, Brutsaert-Strickler,
Penman-Monteith and Bowen Ratio Energy Balance. Six analyzed evaporation
methods for modeled water storage show a deviation ranging between of -24 to 10 %
and -27 to 8 % of evaporative fracture for open pond and sand dam respectively. The
deviation of evaporative fracture equals up to 3.5 and 2.5 % of total water harvested,
in open pond and sand dam respectively, for the analyzed period. The influence of
the evaporation and selected evaporation methods, hence seem less important than
other fluxes when looking into water harvesting systems.

III

Table of Contents

ABSTRACT	 II	

1 INTRODUCTION	 1	

2 STUDY AREA	 3	
2.1 GENERAL OVERVIEW OF THE KITUI DISTRICT	 3	
2.2 VEGETATION IN KITUI	 4	
2.3 WATER AVAILABILITY, LOCAL FACILITIES AND ECONOMY OF KITUI	 5	
2.4 HYDROLOGY AND SAND DAMS IN KITUI	 6	

3 METHODS	 7	
3.1 PROCESSING DATA	 7	
3.1.1 MEASURING METEOROLOGICAL FACTORS	 8	
3.1.2 PROCESSING CLIMATE DATA	 10	
3.1.3 CALCULATING METEOROLOGICAL FACTORS	 11	
3.2 EVAPORATION MODEL	 14	
3.2.1 TEMPERATURE-BASED	 15	
3.2.2 RADIATION-BASED	 16	
3.2.3 WIND AND RESISTANCES-BASED	 17	
3.2.4 ACTUAL EVAPORATION	 18	
3.2.5 STATISTICAL ANALYSIS	 20	
3.3 WATER STORAGE MODEL	 21	
3.3.1 SAND DAM	 22	
3.3.2 OPEN POND	 22	

4 RESULTS	 24	
4.1 DIURNAL FORCINGS AND RAINFALL	 24	
4.2 EVAPORATION MODEL RESULTS	 26	
4.3 WATER STORAGE MODEL RESULTS	 30	

5 DISCUSSION	 32	
5.1 EVAPORATION METHODS IMPLICATIONS	 32	
5.2 WATER STORAGE IMPLICATIONS	 34	

6 CONCLUSION	 35	

APPENDIX	 36	
A1 LIST OF EQUATIONS	 36	
A2 NOMENCLATURE	 38	
A3 MEASURING DEVICES SUPPLEMENT	 40	
A4 MAIN SCRIPT	 42	
A5 TOOLBOX SCRIPT	 50	
A6 EVAPORATION MODEL	 57	
A7 WATER STORAGE MODEL	 66	
A8 PYPLOT SCRIPT	 68	

REFERENCES	 75	

1

1 Introduction
Threats to water availability, demand and pollution are a worldwide problem, making
water security and its indicators a much-discussed topic in scientific research. About
80% of the global population is suffering from these water security-related problems
(Vörösmarty et al., 2010). Due to climate change, water security is projected to be
stressed even more wherein the freshwater resources of semi-arid and arid regions
are particularly exposed (Jiménez, 2014). Of the global population 35.5 % lives in all
dry lands and about 14.4 % of the world’s inhabitants in semi-arid regions (EMG,
2011). As consequence of dry seasons, the inhabitants in semi-arid regions already
have to cope with periods of water scarcity. According to the IPCC (2012), global
change is expected to increase the severity of droughts, intensify precipitation during
a period of rainfall and wet seasons are expected to become shorter in semi-arid
regions. Recent examples of extensive drought periods in semi-arid regions are
found in the Horn of Africa (Nicholson, 2013), wherein millions of people suffer the
consequences of food shortages due to crop failure.1 Taking climate change into
account, the frequency of water shortage will increase in the near future in semi-arid
regions, making the need to grasp for solution to this worldwide problem even more.

To supply water to habitants in semi-arid regions during dry seasons,
precipitation during wet seasons need to be stored with shorter and more intensive
periods of rainfall. According to Lasage et al. (2008), sand dams are a successful
adaption to cope with the expected increase in severity of droughts. This is in
agreement with other studies (Quilis et al., 2009; Olufayo et al., 2009). A sand dam is
a subsurface water storage system in which water flowing from an ephemeral river
can be stored in the sandy sediments before the dam. The dam itself is a simple
barrier in the drainage channel in which the sand dam regulates the water levels in
the river sands as well as the surrounding area (Munywoki et al., 2004). Subsurface
storage strongly reduces evaporation and contamination (Hut, 2008). SASOL, a local
NGO in Kenya, constructed more than 700 sand dams serving more than 150.000
people in the Kitui County, showing the potential of this water harvesting structure
and increasing the water availability in this semi-arid region (Munywoki et al., 2004).
There are also other ways to store water, like an open pond and a water tank. An
open pond is a simple form of surface storage in which the water is fully exposed to
contamination and evaporation. While an open pond is described as an open system,
a water tank is a closed system, which is fed by the runoff of rainwater from a
catchment or rooftop. The performance of these water harvesting systems (WHS) is
among others assessed by Lasage & Verburg (2015), Ngigi (2003) and politically
addressed by Ertsen & Hut (2009).

Fluxes of rainfall, runoff and evaporation influences the water storage and related

costs and benefits of the sand dams and other WHS. Little is known of the water
losses due to evaporation on the performance of a sand dam and other WHS during

1 http://www.fao.org/news/story/en/item/468941/icode/ (retrieved: 28-06-2017)

2

and after periods of rainfall. Recent studies argue that evaporation will not occur
below 0.9 m beneath surface in sandy semi-arid areas with losses around 3 or 4 % of
the total inflow (Love et al., 2011). Furthermore, Aerts et al. (2007) argues
decreasing rates of evaporation with depth in a sandy soil. There are several
methods of approaching evaporation, ranging from temperature-based techniques to
highly complex methods including several meteorological factors. Selecting different
methods of approaching evaporation will result in different outcomes of the modeled
water storage. According to Allen et al. (1998), the more complex FAO Penman-
Monteith is the recommended method of calculating evaporation. Best model
prediction of Penman-Monteith and adaptions of the equation where found by Tanny
et al. (2008) when comparing with open pan evaporation and are thus in agreement
with Allen et al. (2008). While Szilagyi & Jozsa (2008) argue that aridity advection
and complementary evaporation methods are better equipped when dealing with
drought conditions. Next to the complex methods there are also methods that include
a few meteorological parameters or even only temperature. While the more complex
methods are often recommended, due to practical constraints the more simple
methods are also often used. McMahoon et al. (2013) and Guo et al. (2016) made
guides to calculate evaporation using various methods, wherein the former included
a statistical overview of the various methods related to lysimeters, eddy covariance
or other evaporation methods. Furthermore, Rosenberry et al. (2007) compared 15
evaporation methods. In this research various evaporation methods will be assessed
and tested for their statistical differences. Subsequently, a sensitivity analysis of the
various evaporation methods on water harvesting will be implemented. The main
question of this research is:

What is the sensitivity of water harvesting systems for evaporation, considering
multiple methods approaching evaporation rates?

In order to answer the main question, the impact of evaporation methods, ranging

from simple to complex, on the performance of two water harvesting systems is
assessed, using field data gathered in Kitui, Kenya and a water storage model.
Chapter 2 gives a general overview of the study area Kitui, chapter 3 describes the
methods used and chapter 4 elaborates on the results. The discussion is described
in chapter 5 and lastly, chapter 6 concludes.

3

2 Study area

2.1 General overview of the Kitui District
The Kitui County is a semi-arid region located in Eastern Kenya. Kitui counts
approximately 500 thousand inhabitants with an annual population growth rate of 2.6
% and a total land area of approximately 20,000 square kilometers. The altitude
varies between 400 m and 1800 m above sea level and due to these local
differences in height annual rainfall ranges from 500 mm to 1000 mm. Kitui is
depicted in Figure 1, where elevation maps are shown of Kenya and Kitui county.
South Eastern Kenya University (SEKU) and Nyumbani village are also shown, as
these places are included in the research area.

Figure 1: Elevation map of Kenya (left) and Kitui (right), where Nyumbani village and South
Eastern Kenya University (SEKU) are indicated.

Rainfall mostly falls in two wet seasons spanning a couple of months per year.
The first wet season is called ‘the long rains’ and falls between late March and early
June. The second wet season is the so-called ‘short rains’ and falls between late
Octobers throughout November. The long rains are highly erratic and reliable while
the short rains are more consistent. Based on historical rainfall data from the KNMI
climate explorer, a weather station in Kitui measured 990 mm rainfall per year on
average. The first wet season contributes 468 mm on average and the second wet
season 517 mm of rainfall. As shown in Figure 2, most of the rain falls in April and
November with average amounts of 228 and 300 mm respectively. Figure 3 depicts
the sum of rainfall per wet season with standardized anomalies based on historical
rainfall data obtained from KNMI climate explorer. The figure clearly shows the large
deviations in rainfall per year with the lowest point a standardized anomaly of -3 and
217 mm of rainfall in 1983. The highest point is reached in 1968 with standardized
anomaly of 3 and close to 1800 mm of rainfall. The amount of rainfall is of great

4

importance for the inhabitants as their water supply and agriculture is mostly
dependent on the rainfall. The mean temperature per year is 21 ºC and the potential
evaporation is approximately 1500 to 1600 mm per year (Lasage et al., 2008).

Figure 2: Mean monthly rainfall and temperature in Kitui, Kenya for the period 1904-1990
(Source: KNMI Climate Explorer and climate-data.org).

Figure 3: Historical rainfall data for the first and second wet season for the period 1904-1990
with standardized anomalies on top (Source: KNMI climate explorer).

2.2 Vegetation in Kitui
The Kitui County mostly consists of savannas and drought deciduous woodlands.
Variety of vegetation and species distribution in the semi-arid region depends on
topographical features as valley, slope or hillside (Tanaka et al., 2000). The most
dominant tree species are the Lannea triphylla and Commiphora Africana. The
Acacia tree species has become valuable and scarce due to usefulness of firewood
and timber (Hayashi, 1996). Natural grasses and shrubs of lantana camara and other
species are abundant in the area (Munywoki et al., 2004). Figure 4 depicts the

5

vegetation in the study area at the end of November 2016. After some rainfall, natural
grasses are starting to grow on the otherwise dry soil.

Figure 4: Vegetation in the study area at SEKU ground.

2.3 Water availability, local facilities and economy of Kitui
According to the KNBS (2013), 60 % of the district of Kitui was beneath the country’s
poverty line, making it one of the poorest regions of Kenya. Although the main source
of income of 80 % of the population is rain fed agriculture, only 2 % of the area has
high agricultural potential and 32 % of medium potential (KNBS, 2015). Irrigated
agriculture only takes place on small plots on the riverbank and in 2004/2005
approximately 50 % of the population in Kitui received food aid. Other sources of
income are charcoal burning, brick making and basket breading (Lasage et al.,
2008). Water availability is scarce in the region and only 6 % of the population of Kitui
has access to potable water, leaving inhabitants to walk up to 20 kilometers for clean
water. Furthermore, only 45 % of the population has access to water for domestic
use while fewer have access to water that is fit to drink (Lasage et al., 2008). An
alternative natural water source for many inhabitants in rural Kenya is water storage
with rooftop harvesting or scooping holes in sediments of rivers in order to reach the
groundwater. Inhabitants that are relying on rain fed water storage have to cope with
declining and depleting water levels at the end of the dry seasons. In Figure 5 a
scoop-hole is depicted at the end of a dry season leaving inhabitant to dig a couple of
meters in order to reach the depleting source of water.

6

Figure 5: Scoping hole at the end of the dry season in October 2016.

2.4 Hydrology and sand dams in Kitui
Kitui counts two perennial rivers. The Tana River is located at the north boundary of
the region and the Athi River at the southwestern boundary. Both rivers discharge to
the Indian Ocean and most of the Kitui district consists of the catchment area of the
Tana River. During rainy seasons, precipitation-fed ephemeral rivers start flowing in
the region. These temporarily flowing rivers are for most of the inhabitants in the
region more important. Erratic rainfall patterns in combination with poor drainage of
the abundant clayey soils in Kitui results in a scarcity of surface water and
groundwater resources (Pauw et al., 2008). The Sahelian Solution Foundation
(SASOL), a local NGO founded in 1992, together with local communities in Kitui has
set up a rural water conservation program and constructed over 700 sand dams
attempting to tackle the water scarcity of the dry periods in the region. A sand dam is
a simple concrete dam placed in a drainage channel in which water is forced to
infiltrate the river sediment and can be used as storage for later uses. The sandy
sediment of the river helps purify the infiltrating water and eliminates most of the
evaporation. Reaching the water is normally done with a pump, but inhabitants also
make use of scoop holes.

Figure 6: Sand dam at Nyumbani village in Kitui county.

7

3 Methods
Meteorological input is needed in order to calculate water storage and different
methods of evaporation. In Kitui, Kenya an automatic weather station (AWS) has
been set up and installed in order to measure different meteorological factors. The
raw input of the AWS has been processed to daily climate data and other
meteorological factors, not included in the measurements, are calculated with the
processed data. Daily climatological data has been obtained for the period 7th of
October 2016 until 21st of December 2016, 7th of April 2017 until 19th of April 2017,
and 18th of May 2017 until 22nd of May 2017, with a gap of 25th and 26th of October
2016. The small and large gaps are due to measurement failure. In total 90 days of
daily climate data is obtained. Equation 1 depicts the direct forcings of the energy
balance. Taking the evaporation term as residual has closed the energy balance.
This has been used as reference point for statistical analysis for the different
evaporation methods, which are assessed in this research. The results of calculating
evaporation using these different methods have been used as input for a water
storage model to obtain a sensitivity of water storage to the different methods of
evaporation. Calculations have been made based on two WHS and the results are
statistically analyzed in order to validate if the evaporation methods differ
significantly. Figure 7 gives a schematic overview of the methods section and the
sections in which they are elaborated. The Python scripts used for the models and
processing of the data can be found in the appendix.

Figure 7: Schematic overview of the methods used. (Meteorological factors: e.g. latent heat of
vaporization, actual and saturation vapor pressure, and aerodynamic resistance).

3.1 Processing data
The studies of calculating evaporation using various methods are highly discussed
topics in scientific research (McMahon et al., 2013; Guo et al., 2016; Rosenberry et
al., 2007). In these studies experimental designs and theoretical equations are set up
to calculate reference crop, potential and actual evaporation. Most of the evaporation
methods are based on the energy balance (McMahoon et al., 2013; Tanny et al.,
2007). The energy balance is depicted in Equation 1 and is the general form of the
energy budget in terms of a flux:

8

 𝑅! − 𝜆𝐸 − 𝐻 − 𝐺 = 0 (1)

where 𝑅! is the specific flux of net incoming radiation, 𝜆𝐸 the latent heat flux, 𝐻 the
specific flux of sensible heat into the atmosphere, and 𝐺 the specific flux of heat
conducted into the earth (Brutsaert, 2013; Allen et al., 1998). The latter can be
assumed to be zero when dealing with daily time steps (Allen et al., 1998). The AWS
measures meteorological factors needed to calculate evaporation and other terms of
the energy balance summarized in Table 1. Some meteorological factors are not
directly measured with the AWS, but can be calculated using measured data (e.g.
vapor pressure and aerodynamic resistance). Closing the balance and dividing the
latent heat flux by the latent heat of vaporization allows one to calculate the
evaporation as residual in mm day-1. Figure 8 gives an overview of influencing
factors of Equation 1. According to Guo et al. (2016), the term water advected energy
only applies for open-water bodies and can be neglected for this research. Radiation,
ground heat exchange and sensible heat flux are depicted within the energy balance
box and both influence evaporation. Resistances, vapor gradient and wind moreover
influence Mass transfer of water vapor.

Figure 8: Overview of important forcings of evaporation (Adopted from: Guo et al., 2016).

3.1.1 Measuring meteorological factors
An AWS has been set up to log a continuous series of measurements of
meteorological factors in the study area. At the core of the station a CR1000 data
logger is installed and connected to the various devices that measures the factors.
The AWS is attached to a solar panel in order to provide a power supply and keep
the data logger operational. Every five seconds a measurement is done by the
attached instrument and every 15 minutes data is logged in the system. In most
cases the measurement logged is the average of the previous 15 minutes. For
rainfall the measurements are summed. Table 1 summarizes the instruments used
and their specifications.

9

Table 1: Summary of the measuring instruments

Component Instrument Units Accuracy Resolution Height

Rainfall Campbell Scientific
ARG100 Rain Collector mm ±2 % up to

50 mm hr-1 0.1 mm 1 m

Air
temperature

Vaisala HMP45C
Temperature and
Relative Humidity

Probe

ºC ±0.2 °C 0.1 °C 1.25 m and
2 m

Relative
humidity

Vaisala HMP45C
Temperature and
Relative Humidity

Probe

% ±2 % 0.10 % 1.25 m and
2 m

Solar
radiation

Skye SKS1110
Pyranometer W m-2 < ±0.2 % 0.1 W m-2 1.5 m

Net radiation Kipp & Zonnen NR-
LITE 2 Net radiometer W m-2

< ±3 % (at
1000 W m-

2)
0.1 W m-2 1.5 m

Wind speed DS-2 Sonic
Anenometer m s-1 ±3 % 0.01 m s-1 2.25 m

Soil
temperature

Campbell Scientific 107
Temperature Probe ºC ±0.2 °C 0.1 °C 0.05 m

depth

Soil heat flux
Campbell Scientific

Hukseflux HFP01 Heat
Flux Plate

W m-2 Within -15
% to +5 % 0.1 W m-2 0.05 m

depth

Soil water
content

Campbell Scientific
CS616 Water Content

Reflectometers
% ±2.5 % 0.10%

0.05 and
0.10 m
depth

The AWS has been set up to meet the WMO specifications (Jarraud, 2008). A

rain gauge tipping bucket measures rainfall in mm at a height of 1 m. As depicted in
Figure 9 there are two temperature and relative humidity instruments at the height of
1.25 m and 1.75 m, which agrees with the WMO standard between 1.25-2.00 m. At
1.5 m height an arm is perpendicularly attached to the main pole and carries two
radiation instruments. Due to potential influences of the main pole, the arm is 1 m
long. At the end of the arm the net radiometer is attached and in the middle the solar
radiometer. There are two plots in which measurements are done, i.e. the soil plot
and sand dam sediment plot. The latter plot contains a soil temperature probe, soil
water content reflectometer and a soil heat flux all placed at a depth of 0.05 m. The
soil plot contains the same but with a second soil water content reflectometer at the
depth of 0.1 m. More information about the devices used is found in the appendix.
The location, field equipment and description of the automatic weather station are
depicted in Figure 9.

10

Figure 9: Field equipment and surroundings of the automatic weather station at SEKU ground.
The following devices and plots are numbered; data logger (1), rain gauge (2), temperature and
humidity device (3 & 4), solar radiation meter (5), net radiation meter (6), wind speed and
direction on top of the pole (7), solar panel on top of dark gray pole behind arm of net radiation
meter (8), soil plot (9), and sand dam sediment plot (10).

3.1.2 Processing climate data
The 15-minute intervals between the measurements are processed to daily data,
where the measurement day starts at 08:00. For the factors wind speed, solar
radiation, net radiation, soil water content and soil heat flux the daily averages are
calculated. Temperature and humidity are processed to daily data by summing the
daily maximum and minimum divided by 2. Precipitation measurements are summed
to daily data. Because most of the evaporation techniques require radiation in MJ m-

2, the solar, net radiation and soil heat flux are converted from W m-2 to MJ m-2. When
measurements fail, the days that possess gaps are discarded and, furthermore,
measurements with NaN are replaced by daily mean, maximum or minimum. The
photoperiod hours per day and extraterrestrial radiation has been calculated by the
following set of equations:

 𝑑! = 1 + 0.033 cos 2 𝐽 𝜋 365 (2)
 𝛿 = 0.409 sin 2 𝐽 𝜋 365 − 1.39 (3)
 φ = 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 𝜋 180 (4)
 𝜔 = cos!! tan𝜙 tan 𝛿 (5)
 𝐿 = 24𝜔 𝜋 (6)

, where 𝐽 is the Julian day and number of the day of the year, 𝑑! the inverse relative
distance Earth-Sun, 𝛿 is the sun declination, φ the latitude in radians and 𝜔 is the
hour angle at sunrise or sunset (Allen et al, 1998; Iqbal, 2012; Guo et al., 2016). The
hours per day, 𝐿, is needed as input in order to calculate an evaporation models
specified in section 3.2. The set of Equations 2 to 6 is hereafter referred to as the

11

sunrise equation. With the sunrise equation, the extraterrestrial radiation can be
calculated by filling in the following equation:

𝑅! =
24 60
𝜋

𝐺!"𝑑! 𝜔 sin 𝜑 sin 𝛿 + cos 𝜑 cos 𝛿 sin 𝜔 (7)

, where 𝐺!" is the solar constant and 𝑅! the extraterrestrial radiation in MJ day-1
(Allen et al, 1998). Due to measurement failure of net radiation during the period of
measuring in 2017, the net radiation is estimated by filling in the set of equations 8 to
11.

 𝑅!" = 0.75 + 2(10!!)𝑧 𝑅! (8)
 𝑅!" = 1−∝ 𝑅! (9)

𝑅!" = 𝜎
𝑇!"#,!! + 𝑇!"#,!!

2
0.34 − 0.14 𝑒! 1.35

𝑅!
𝑅!"

− 0.35 (10)

 𝑅! = 𝑅!" − 𝑅!" (11)

, where 𝑅!" is the clear-sky solar radiation, 𝑅!" is the net solar or net shortwave
radiation, ∝ is the albedo of the study area, 𝑅! is the measured solar radiation, 𝑅!" is
the net longwave radiation, 𝑒! is the actual vapor pressure described in the next
section and 𝑅! the net radiation (Allen et al., 1998). 𝑇!"#,! and 𝑇!"#,! are the
maximum and minimum temperature of the day in Kelvin degrees and the average
albedo is computed, for the period where net radiation measures are available, by
taking it as the residual and filling in the set of equation. An average value of 0.39 is
estimated.

3.1.3 Calculating meteorological factors
Next to the measured meteorological factors, other factors are used for calculating
evaporation using different methods. Resistances and vapor pressures are examples
of such influencing factors on evaporation. This section describes the often-used
factors as input for evaporation not measured, but calculated with constants and
measured fluxes. An overview of all the measured and calculated factors required as
input for the evaporation model is shown in the Figure 10.

Figure 10: Overview of the measured meteorological factors (blue) and calculated
meteorological factors (red). The green arrows depict the flow of input.

12

Wind speed is an important factor in meteorology and influences the evaporation rate
by altering the aerodynamic resistance. At the surface wind speed is slowest and
increases with height. Due to these differences in wind speed at different heights, a
standard height of 2 m is required in order to calculate evaporation (Allen et al.,
1998). To adjust wind speed data from the measured 3.25 m height to 2 m height,
the following equation is used:

 𝑈! = 𝑈!

4.87
ln 67.8𝑧 − 5.42

 (12)

, where 𝑧 and 𝑈! is the wind speed measured height and measurements respectively
(Allen et al., 1998). With wind speed data at a height of 2 m, the aerodynamic
resistance factor can be calculated with equation 13.

𝑟! =
𝑙𝑛 𝑧! − 𝑑

𝑧!"
𝑙𝑛 𝑧! − 𝑑

𝑧!!
𝑘!𝑈!

 (13)

, where 𝑧! and 𝑧! are the height of wind speed and relative humidity measurements
respectively, 𝑑 is the zero plane displacement height, 𝑧!" and 𝑧!! are the roughness
length governing momentum transfer and transfer of heat and vapor respectively,
and 𝑘 the von Karman’s constant. The aerodynamic resistance 𝑟! is the resistance to
transfer of heat and water vapor from the surface into the air above the surface and
is expressed in s m-1 (Allen et al., 1998). Next to the aerodynamic resistance there is
also surface resistance and is approximated by the following equation:

 𝑟! =

𝑟!
𝐿𝐴𝐼

 (14)

, where 𝑟! is the bulk surface resistance of the leaf and 𝐿𝐴𝐼 the leaf area index. The
bulk surface resistance is for the grass reference surface is approximated to 70 s m-1
(Allen et al., 1998). The temperature dew point is calculated with the following
equation:

𝑇! = 𝑇! 1 −
𝑇! ln

𝑅𝐻
100

𝑒! 𝑅!

!!

− 273.15 (15)

, where 𝑻𝑲 is the temperature in Kelvin degrees, 𝑅𝐻 is the relative humidity, 𝑒! is the
enthalpy of vaporization, and 𝑅! is the gas constant for water vapor (Lawrence,
2005). The latent heat of vaporization is calculated using equation 16:

 𝜆 = 2.501 − 2.361×10!! 𝑇! (16)

13

, where 𝑇! is temperature in degrees Kelvin and 𝜆 the latent heat of vaporization in
MJ kg-2 (Allen et al., 1998). With the latent heat of vaporization, the psychrometric
constant can be computed with the following calculation:

 𝛾 =

𝑐!𝑃
𝜀𝜆

 (17)

, where 𝑐! is the specific heat at constant pressure, 𝑃 is the atmospheric pressure, 𝜀
is the ratio molecular weight of water vapor and dry air and 𝛾 the psychrometric
constant in kPaºC-1. As shown in Figure 10, the Teten’s equation is an important
factor and allows calculations of saturation, actual and equilibrium vapor pressure.
The saturation vapor pressure at a specific temperature can be calculated with the
Teten’s equation:

𝑒° 𝑇 = 0.6108𝑒
!".!"!!
!!!!"#.! (18)

𝑒! =

𝑒° 𝑇!"# + 𝑒° 𝑇!"#
2

 (19)

To calculate the mean saturation vapor pressure 𝑒!, the average between 𝑒° 𝑇!"#
and 𝑒° 𝑇!"# is calculated (Monteith & Unsworth, 2007). Actual vapor pressure is
derived from relative humidity and calculated with one of the following formulas:

𝑒! =
𝑒° 𝑇!"#

𝑅𝐻!"#
100 + 𝑒° 𝑇!"#

𝑅𝐻!"#
100

2
= 𝑒° 𝑇! (20)

Both saturation and actual vapor pressure are calculated in kPa (Allen et al., 1998;
Guo et al., 2016). In this study actual vapor pressure is calculated with the second
formula. Once actual and saturation vapor pressure are computed, the vapor
pressure deficit is be expressed as:

 𝑉𝑃𝐷 = 𝑒! − 𝑒! (21)

The slope of the saturation vapor pressure curve in kPaºC-1 is calculated with the
following equation (Allen et al., 1998):

 ∆=

4098 𝑒!
𝑇! + 237.3 ! (22)

The Penman model (Penman, 1948) and a couple of derivations of this model makes
use of a wind function as aerodynamic component in the evaporation calculation and
is later revised as follows:

 𝐸! = 1.313 + 1.381𝑈! 𝑉𝑃𝐷 (23)

, where the wind function is denoted between brackets (Penman, 1956). The wet
environment surface temperature or equilibrium temperature, as described by

14

Szilagyi & Jozsa (2008), is needed in order to calculate evaporation models of
Szilagyi-Jozsa and Morton CRAE (Morton, 1983). It can be estimated iteratively by
the following equation since all other terms are known:

 𝑅!

𝜆𝐸!"#
= 1 +

𝛾 𝑇! − 𝑇!
𝑒!∗ − 𝑒!

 (24)

, where 𝑇! is the equilibrium temperature and 𝑒!∗ is the saturation vapor pressure at 𝑇!
(Szilagyi & Jozsa, 2008; Guo et al., 2016). The temperature equilibrium is assumed
to be lower than the air temperature. Sensible heat flux in Wm-2 is calculated with the
following equation:

𝐻 = 𝑐!𝑃
𝑇! − 𝑇!
𝑟!

 (25)

, where 𝑇! and 𝑇! are surface and air temperature respectively (Monteith & Unsowrth,
2007; Liu et al., 2007).

3.2 Evaporation model
The energy balance of Equation 1 is used as a starting point for deriving evaporation
models. More complex equations include the fluxes of the energy balance directly or
indirectly and more simple equations are derived empirically or calibrated with
evaporation pans or lysimeters. In this model the evaporation methods are based on
these energy fluxes or forcings. Net radiation and soil heat flux are measured directly
with the AWS. The latent heat flux can be calculated with the evaporation methods or
can be calculated by filling in the energy balance. To convert energy expressed in MJ
day-1 to water depth in mm day-1, the latent heat of vaporization is used as
conversion factor (Allen et al., 1998). The calculated evaporation flux by closing the
energy balance will be used as a reference for the evaporation methods. This
method is different than the more commonly used Bowen Ratio Energy Balance in
semi-arid areas and is also used by Yamanaka et al. (2007) and Duan &
Bastiaanssen (2017). The advantage of this method is that it is easier to compare the
observed and calculated energy fluxes of the evaporation methods. As stated by
Tamanaka et al. (2007), the disadvantage of this method is that the errors/biases in
calculating the forcings of the energy balance will cumulate in the latent heat flux.
Furthermore, Tanny et al. (2007) also includes the closure of the energy balance in
their research. This method will further be referred as the energy balance closure
(EBC) method. There are several methods used in literature in which to calculate
evaporation and for this research sixteen methods have been selected (McMahoon
et al., 2013; Guo et al., 2016). These methods will be categorized as temperature-
based, radiation-based, more complex techniques with additional factors as wind and
resistances-based, and lastly, complementary relationship derivations of actual
evaporation. While the former two are dealing mostly with empirically or calibrated
techniques for specific locations, the latter are more directly derived from the energy
balance. All evaporation methods are calculated in mm day-1 and the terms 𝐸 and 𝐸𝑇

15

are expressed as evaporation and (reference crop) evapotranspiration respectively.
An overview of the evaporation models and requirements of meteorological
measurements are shown in the Figure 11.

Figure 11: Overview of the four categories of evaporation models and requirements of
meteorological measurements for computation. The abbreviations for the evaporation models
are mentioned for each model in section 3.2.1-4.

3.2.1 Temperature-based
One of the earlier works in estimating evaporation, and is still used, is the
Thornthwaite method. This method introduced temperature as a parameter for
evaporation (Monteith, 1994). The Thornthwaite formula is expressed as follows:

𝐸!" = 16
𝐿
360

10
𝑇!
𝐼

∝!"
 (26)

, where 𝐿 divided by 360 is a correctional term to transform monthly to daily
evaporation, 𝑇! is temperature, 𝐼 is a thermal index, and ∝!" is a function of 𝐼
(Thornthwaite, 1948; Pereira & Pruitt, 2004). Shortly after the publication by
Thornthwaite, the Blaney-Criddle temperature based evaporation method surfaced in
the scientific community in 1950. The Blaney-Criddle method was used by the FAO
(Allen & Pruitt, 1986; Doorenbos et al., 1992) and is calculated with equation 27:

 𝐸!" = 𝑐 𝑝! 0.46𝑇! + 8 (27)

, where 𝑐 is a adjustment factor based on sunshine hours per day and minimum
relative humidity, and 𝑝! is the ratio of actual daytime hours per day and total annual
daytime hours (Doorenbos et al., 1992; Guo et al., 2016). Another temperature-
based evaporation model is the McGuiness-Bordne and makes use of extraterrestrial
radiation calculated based on the sunrise equation, resulting in the following
equation:

16

 𝐸!" =
1
68𝜆

𝑅! 𝑇! + 5 (28)

, where 𝑅! is the extraterrestrial radiation (Oudin et al., 2005). Although this equation
makes directly use of a radiation term, the Thornthwaite and Blaney-Criddle indirectly
makes use of the sunrise equation.

3.2.2 Radiation-based
Radiation based temperature are not dependent on one factor like the temperature
based methods, but also make use of net or solar radiation and other factors like
relative humidity and latent heat of vaporization. The radiation-based methods are
similar to the empirically temperature-based methods and/or derived from physical-
based methods. Turc (1961) showed that evaporation rates can be estimated with a
simple climatic formula and is expressed with the following equation:

 𝐸!"#$ = 0.0133 23.88𝑅! + 50

𝑇!
𝑇! + 15

+ 1 +
50 − 𝑅𝐻

70
 (29)

The Turc equation estimates evaporation as a function of solar radiation, relative
humidity and temperature (Guo et al., 2016). Another radiation-based evaporation
method is the Hargreaves-Samani (Hargreaves & Samani, 1985) and is calculated as
follows:

 𝐸!" = 0.0135𝑅! 𝑇! + 17.8 (30)

This method is a function of solar radiation, air temperature and latent heat of
vaporization. Makkink (1957) simplified the Penman equation, described in the next
section, and is expressed with equation 30:

 𝐸!" = 𝑐!

∆
∆ + 𝛾

𝑅!
𝜆

− 𝑐! (31)

, where 𝑐! and 𝑐! are constants of 0.61 (dimensionless) and 0.12 (mm day-1)
respectively. The Makkink equation is calibrated to cool climate conditions where the
surface is covered with reference crop (De Bruin, 1981; Alexandris et al., 2008). A
more physical radiation-based evaporation method is approached by Priestley &
Taylor (1972) and is described with the following equation:

 𝐸!" =∝!"

∆
∆ + 𝛾

𝑅! − 𝐺
𝜆

 (32)

, where ∝!" is the Priestley-Taylor coefficient and equals 1.26 for advection-free
saturated surfaces (Priestley & Taylor, 1972). According to Jensen et al. (1990), the
Priestley-Taylor coefficient can be set between 1.70 and 1.75 for semi-arid regions.
The Priesley-Taylor coefficient is optimized by filling in the EBC results as
evaporation and averaging over the period. Inman-Bamber & McGlinchey (2003) did

17

a similar experiment in which they calculated evaporation rates based on the Bowen
ratio energy balance (BREB) with a automatic weather station. Furthermore, Szilagyi
& Jozsa (2007) and Rosenberry et al. (2007) show different ways to calculate BREB.
In this research the BREB method uses, the temperature and actual vapor pressure
gradient between the lower and upper arm as input, resulting in the following two
equations:

 𝛽 = 𝛾

𝑇!,! − 𝑇!,!
𝑒!,! − 𝑒!,!

 (33)

 𝐸!"#! =
𝑅! − 𝐺
1 + 𝛽

 (34)

, where 𝛽 is the Bowen ratio and the subscripts L and U are lower arm and upper
arm respectively (Dexler et al., 2004; Nagler et al., 2005). Other ways to calculate the
Bowen ratio are with saturation vapor pressure gradient, equilibrium temperature and
vapor pressure gradient and vapor pressure deficit (Rosenberry et al., 2007; Inman-
Bamber & McGlinchey, 2003; Szilagyi & Jozsa, 2007).

3.2.3 Wind and resistances-based
One of the landmarks towards a physical-based model of evaporation was the
publication of Penman (1948), which was the first to combine an energy equation
with an aerodynamic approach for estimating evaporation. The use of net radiation
as energy in the equation eliminates the use of temperature, which results in the
following equation, known as the Penman or Penman combination equation
(McMahoon et al., 2013):

 𝐸!"# =

∆
∆ + 𝛾

𝑅!
𝜆
+

𝛾
∆ + 𝛾

𝐸! (35)

, where 𝐸! is the aerodynamic component based on a wind speed function and the
vapor pressure deficit. Another landmark was reached when Monteith et al. (1965)
combined the Penman equation by linking the equation’s aerodynamic component of
saturated surfaces through turbulent transport with the constraint of the energy
balance (Dolman et al., 2014). The Penman-Monteith equation makes use of
aerodynamic and surface resistances and is expressed as followed (Allen et al.,
1998):

𝐸𝑇!" =
1
𝜆

∆ 𝑅! − 𝐺 + 𝑝!𝑐!
𝑒! − 𝑒!
𝑟!

∆ + 𝛾 1 + 𝑟!
𝑟!

 (36)

, where 𝑝! is the mean air density at constant pressure. The Penman-Monteith
equation is a physical-based equation, which incorporates all components of the
energy balance. Because of the many factors involved and calibration of the
resistances terms the Penman-Monteith equation has become complex. The FAO
decided to make guidelines for reference crop ET and has adopted a simplified

18

version of the Penman-Monteith equation by filling in reference crop estimates and
eliminating the resistances terms, resulting in the following equation (Allen et al.,
1998):

𝐸𝑇!"# =
0.408∆ 𝑅! − 𝐺 + 𝛾 900

𝑇 + 273𝑈! 𝑒! − 𝑒!
∆ + 𝛾 1 + 0.34𝑈!

 (37)

, where 𝐸𝑇!"# is the reference crop, with a height of 0.12 meter, evapotranspiration
for a vegetated surface of grasses. Allen et al. (1998) describes the derivation of the
FAO Penman-Monteith equation for the grass reference crop. Another adoption of
the Penman-Monteith equation is the Matt-Shuttleworth equation by Shuttleworth
(2006). This equation involves the general applications of Penman-Monteith
equation, but now for all well watered crops instead of a reference crop. The Matt-
Shuttleworth equation is calibrated to well-watered evaporative surfaces in windy
semi-arid region and described with the following equation (Shuttleworth & Wallace,
2009):

𝐸𝑇!" =
∆ 𝑅! − 𝐺 + 𝑉𝑃𝐷!"

𝑉𝑃𝐷!
𝑝!𝑐!𝑈!𝑉𝑃𝐷!

𝑅!!"

∆ + 𝛾 1 + 𝑟!𝑈!𝑅!!"
 (38)

, where 𝑉𝑃𝐷!" and 𝑉𝑃𝐷! are the vapor pressure deficit at 50 and 2 meters
respectively, and 𝑅!!" is an aerodynamic coefficient. The height of 50 meters is
chosen arbitrarily and the calculations of the terms at 50 meters height and derivation
of the equation are provided by Shuttleworth (2006).

3.2.4 Actual evaporation
Bouchet (1963) set up a method in which to approach actual evaporation and
hypothesized that actual and potential evaporation depends on each other in a
complementary way. This complementary relationship exists via feedbacks between
the land and the atmosphere (McMahoon et al., 2013). Bouchet (1963) proposed this
complementary relationship with the following equation:

 𝐸!"# = 2𝐸!"# − 𝐸!"# (39)

, where actual evaporation equals two wet environment evaporation minus potential
evaporation. According to Huntington et al. (2011), potential evaporation will increase
and actual evaporation will decrease when moisture availability decreases. Actual
evaporation will be zero when no moisture is available. However, when the
landscape becomes fully saturated the actual, wet and potential evaporation will all
be equal to each other (McMahoon et al., 2013). This complementary relationship is
important when measuring evaporation in semi-arid areas, and thus included in the
evaporation model. A conceptual representation of the complimentary relationship is
depicted in Figure 12.

19

Figure 12: Conceptual representation of the complementary relationship in terms of latent heat
flux (Adopted from: Huntington et al., 2011).

Brutsaert & Strickler (1979) proposed the advection-aridity model based on the
symmetric complementary relationship approach. Their model results in the following
formula:

 𝐸!" = 2 ∝!"− 1

∆
∆ + 𝛾

𝑅!
𝜆
−

𝛾
∆ + 𝛾

𝐸! (40)

Similar to the Brutsaert-Strickler formula, Szilagyi & Jozsa (2008) proposed a new
modified advection-aridity model, resulting in the following equation:

 𝐸!" = 2𝐸!" 𝑇! − 𝐸!"# (41)

, where the term 𝐸!" 𝑇! is the Priestley-Taylor equation calculated with the
equilibrium temperature. Next to the complementary relationship, Granger & Gray
(1989) proposed another method to estimate actual evaporation. The Granger-Gray
method is based on the Penman equation and establishes a new dimensionless
parameter called the relative drying power (Granger & Gray, 1989). This parameter
accounts for the departure of saturated conditions and thus approach actual
evaporation, expressed as followed:

 𝐸!! =

∆𝐺!
∆𝐺! + 𝛾

𝑅! − 𝐺
𝜆

+
𝛾𝐺!

∆𝐺! + 𝛾
𝐸! (42)

, where the term 𝐺! is the ratio actual to potential evaporation and a function of the
relative drying power derived and discussed by Granger & Gray (1989). Another
approach of estimating actual evaporation is the model of Morton (1983). According
to McMahoon et al. (2013), Morton was at the forefront of evaporation analysis since

20

1965 and culminates in the mid-80s with three models for actual evaporation for land,
shallow and deep lakes. Morton (1983) proposed his CRAE model for actual
evaporation on land and is based on the complementary relationship described
earlier. Furthermore, Nash (1989) discussed Morton’s CRAE model to be a valuable
extension to the Penman equation in that it allows evaporation estimations under
limited water supply. The model is tested for 143 basins and is expressed with the
following equation (Morton, 1983):

 𝐸𝑇!"#$ =

1
𝜆
𝑅! − 𝛾𝑃𝑓! + 4𝜖!𝜎 𝑇! + 273 ! 𝑇! − 𝑇! (43)

, where 𝜆 is in W day-1, 𝑓! is the vapor transfer coefficient, 𝜖! is the surface emissivity,
and 𝜎 is the Stafan-Boltzmann coefficient. The Morton CRAE model is the most
complex of evaporation methods used in this research.

3.2.5 Statistical analysis
In this research sixteen evaporation methods are used. To compare these different
evaporation methods statistical analysis is applied. All the methods have been
correlated with one another and the correlation coefficients have been produced in a
single heatmap. The Pearson’s product correlation coefficient is used and is
calculated as followed:

𝑝!,! =
𝑐𝑜𝑣 𝑋, 𝑌
𝜎!𝜎!

 (44)

, where 𝑐𝑜𝑣 𝑋, 𝑌 is the covariance between variable 𝑋 and 𝑌, and 𝜎 the standard
deviation (Benesty et al., 2009). P-values of the correlation are calculated with a t-
distribution. r2 values between each method have been computed and are also
produced in a single heatmap. The r2 values are calculated with taking the square of
the correlation coefficient (Benesty et al., 2009) and have been used by Szilagyi &
Jozsa (2007) among others to compare different evaporation methods. Individual
regression plots between specific methods are produced with trend line and deviation
from the reference EBC method. Significance of each evaporation method against
the reference EBC method is calculated with p-values. The EBC method and the
different evaporation models were analyzed using the following linear regression
equation:

 𝑌 = 𝑚𝑋 + 𝑏 (45)

, where 𝑌 is the EBC method, 𝑚 and 𝑏 constants, and 𝑋 the evaporation model.
Similar regression plots have been produced as shown in the paper by Tanny et al.,
(2007). Furthermore, for all evaporation methods with the EBC method the index of
agreement (IA) has been calculated. The index of agreement is a relative difference
measure and is expressed as (Willmott, 1982):

21

𝐼𝐴 = 1 −

𝑋! − 𝑌! !!
!!!
𝑋! − 𝑌 + 𝑌! − 𝑌 !!

!!!
 (46)

, where 𝑌 is the mean of variable 𝑌 and perfect agreement between 𝑋 and 𝑌 is
reached when IA equals 1 (Todd et al., 2000). The root mean square error (RMSE) is
calculated with the following equation (Willmott, 1982):

𝑅𝑀𝑆𝐸 = 𝑛!! 𝑋! − 𝑌! !
!

!!!
 (47)

According to Willmott (1982), the RMSE is one of the best overall measures of model
performance as they summarize the difference between the two variables and has
been used by McMahoon et al. (2013) when comparing different evaporation
methods. Furthermore, the Nash and Sutcliffe (1970) efficiency coefficient is
calculated with the following formula:

𝑁𝑆𝐸 = 1 −
𝑋! − 𝑌! !!

!!!
𝑋! − 𝑋 !!

!!!
 (48)

, where 𝑁𝑆𝐸 is the Nash-Sutcliffe efficiency coefficient ranging from -∞ to 1, with 1
meaning a perfect match. According to Schaefli & Gupta (2007), the Nash and
Sutcliffe efficiency coefficient is a powerful tool in hydrological modeling and therefore
included in the evaporation model. Performances of a comparison analysis of
evaporation methods, including the IA, RMSE, NSE has, among others, been used
by Legates & McCabe (1999), Todd et al. (2000) and Tanny et al. (2007).
Furthermore, a sensitivity analysis is done for the different methods of calculating the
Bowen ratio and optimizing the Priesley-Taylor coefficient for the Priesley-Taylor,
Szilagyi-Jozsa and Brutsaert-Strickler methods.

3.3 Water storage model
To test the impact of choice of evaporation method on available water in a WHS, a
simple water storage model is used (Tiggeloven, 2015). Six evaporation methods
have been selected to calculate evaporation with this model, which cover the
categories of methods, and performance of the statistical analysis has been
produced to compare the sensitivity of the WHS to the selected evaporation methods.
To measure the effectiveness of different evaporation time series as input a couple
water harvesting systems are used in the water storage model. The model runs on
daily time steps for the period 7th of October until 21st of December 2016s in which,
the water storage increases with rainfall and declines with evaporation and daily
usage of inhabitants of the region and community. Rainfall is measured at the AWS
and because of poor results for the second rainy season; the WHS are set to full
capacity at the beginning of the model run. After rainfall, runoff takes place after a
threshold of 10 mm day-1 and has been integrated in the model with catchment area
and runoff coefficient of 0.58. The threshold value is based on Li et al. (2004), which

22

measures a threshold between 7-9 mm day-1 for dry soils and Cammeraat (2004).
The ROC value is based on two bare fallow plots (van de Giesen et al., 2000) To
compare the performance of the WHS and the different evaporation methods as
input, the results of the total evaporative fracture has been divided by the capacity of
the WHS. The RMSE compares the deviations of the water storage during the period
of modeling. The usage of water has been set to 0.012 m3 per day per inhabitant
(Lasage et al., 2015). Figure 13 depicts a schematic overview of the evaporation
method and the flow on input, parameters and calculation. First global parameters
and specific WHS parameters are assigned, then the storage calculations are done.
Output of the model contains of the calculated evaporative fracture, storage level and
total water harvested. The dimensions and usage of the modeled sand dam and
open pond as WHS have been specified in the next two sections.

Figure 13: Overview of the evaporation model.

3.3.1 Sand dam
The modeled sand dam has estimated dimensions of the channel width, length and
average depth of the sand dam located near Nyumbani Village, Kitui. The
dimensions have been set to 40 m length, 9.25 m width and an average depth of 3
m. Subsequently, the capacity of the sand dam reaches 1098 m3 and the catchment
has been set to 5.2 km2 and meets the specification of the ephemeral river at
Nyumbani Village. For evaporation in a sand dam only the top 90 cm of the sediment
water storage is affected (Love et al., 2011). Furthermore, assumptions has been
made that a runoff coefficient determines the percentage of water that reaches the
dam and all the water can potentially be stored and infiltrated directly in the sediment
of the sand dam. The community at Nyumbani Village exists of 1100 inhabitants.

3.3.2 Open pond
For the modeled open pond, smaller dimensions have been selected than the sand
dam, as open pond systems supply water to a couple of households (Lasage &
Verburg, 2015). The dimensions have been set to 5 m by 5 m with a depth of 2 m.
The catchment has been set to 300 m2, making the open pond ideal for

23

approximately ten households. Average household size is assumed to consist of 5.8
persons (Lasage et al., 2015).

24

4 Results

4.1 Diurnal forcings and rainfall
During the second rainy season of 2016, 175 mm of precipitation has been measured
at the AWS in Kitui. This amount is a poor result for the region and is much below the
average of 517 mm for the second rainy season according to the historical data with
a standardized anomaly of -1.6. Only three years in the historical data have a lower
anomaly than the one measured and where 1917, 1970 and 1983. The average
measured temperature is 22 ºC with small deviations of 2 ºC. An overview of the
temperature and rainfall during the period of measurements is given in Figure 14.
After a dry October, precipitation was starting to fall in November with the peak
between 14th and 21st of November.

Figure 14: Rainfall and temperature measurements during the period 7th of October till 21st of
December in Kitui, Kenya. The red line is temperature and bars represents rainfall.

The primary forcings of the energy balance are depicted in a diurnal plot of 16th
and 17th of October in Figure 15. The sensible heat flux is relatively stable during the
day and night compared to the net radiation and soil heat flux. The net radiation
reaches its peak during the middle of the day, while the soil heat flux reaches its
peaker at the end of the afternoon. The latent heat flux has been derived by the
Penman-Monteith equation, described in Equation 36. Cloud interactions causes the
net radiation flux to have spikes during the day.

25

Figure 15: Diurnal energy fluxes during 16th and 17th of October 2016.

The equilibrium temperature has been calculated on a daily time step with the
assumption that it should be lower than the air temperature. The results of the
calculation are depicted in Figure 16, in which the equilibrium temperature is
compared with the air temperature. The r2 value shows little agreement between
changes in air temperature to changes in equilibrium temperature. Next to the
regression plot of the equilibrium temperature, the measured versus calculated net
radiation plot is shown. The calculation of net radiation overestimates at low radiation
values and underestimates at higher radiation values. An r2 value of 0.7 is calculated.
Both plots have a p-value lower than 0.01 computed with the Pearson correlation.

Figure 16: Regression plot of the equilibrium temperature versus the air temperature (left) and
measured net radiation versus calculated radiation (right). The green line represents the
regression line and the dashed the 1:1 ratio.

An overview of the average and standard deviation for all measured and
calculated meteorological factors is given in Table 2. The soil heat flux is on average
close to zero.

26

Table 2: Summary statistics of the measured and calculated meteorological factors.

T1 T2 RH1 RH2 Rs Rn WS G Re Te

Mean 22.79 22.13 68.46 70.26 68.46 9.21 2.43 -0.06 36.60 21.88
Std dev 0.95 3.63 7.80 10.27 7.80 1.84 0.62 0.48 0.70 1.01

Td lv psy es ea VPD slope ra Ea H

Mean 16.49 2.45 0.07 2.91 1.88 1.02 0.17 178,96 4.92 0.22
Std dev 1.45 <0.01 <0.01 0.19 0.17 0.29 <0.01 52.03 2.02 0.09

*T1: Temperature 1.25m [ºC]; T2: Temperature 1.75m [ºC]; RH1: Relative humidity 1.25m [%]; RH2: Relative
humidity 1.75m [%]; Rs: Solar radiation [MJ day-1]; Rn: Net radiation [MJ day-1]; WS: Wind speed [m s-1]; G: Soil heat
flux [MJ day-1]; Re: Extraterrestrial radiation [MJ day-1]; Te: Equilibrium temperature [ºC]; Td: dew point temperature
[ºC]; lv: Latent heat of vaporization [MJ day-1]; psy: Psychrometric constant [kPaºC-1]; es: saturation vapor pressure
[kPa]; ea: actual vapor pressure [kPa]; VPD: Vapor pressure deficit [kPa]; slope: Slope of saturation vapor pressure
curve [kPaºC-1]; ra: aerodynamic resistance [day m-1]; Ea: Wind-function [-]; H: sensible heat flux [MJ day-1].

4.2 Evaporation model results
Sixteen methods of evaporation have been calculated with the processed data. An
overview of the daily evaporation per category for the period of measuring has been
provided in Figure 17 in which the EBC method is depicted in every subplot. The first
subplot groups the temperature-based methods. As they are only based on
temperature and the temperature fluctuations are within 2 ºC per day, the
temperature-based methods evaporation fluctuations are also expected to be similar.
The Thornthwaite method is the most sensitive to temperature fluctuations and has
the highest standard deviation of the three temperature-based methods as shown in
Table 3. The Blaney-Criddle method and McGuinnes-Bordne have the highest
evaporation results on average.

The second subplot in Figure 17 depicts the radiation-based methods. These
methods have higher fluctuations and are sensitive to radiation input. The Turc,
Haergraves-Samani and Makkink methods share similar behavior, however the
Makkink method is continuously lower than the former two methods. The Priesley-
Taylor method has generally the same behavior as the other radiation-based
methods, and closely matches the EBC method. The BREB method clearly shows
different behavior and is on average lower than the EBC method, in contrast to the
other radiation-based methods, which have on general higher values than the EBC
method.

The wind and resistances-based evaporation method are depicted in the third
subplot of Figure 17, and generally agree more with the EBC method than the
radiation- and temperature-based methods. The results of the Penman and FAO PM
methods as well as Penman-Monteith and Matt-Shuttleworth show similar behavior
and results. As all the methods in this category are derived from the Penman
method, the outcome and behavior are similar and close to the EBC method with the
exception of the first third of the measuring period.

The last subplot contains the actual evaporation and complementary relationship
methods. Large deviations between the methods are found in which the Brutsaert-

27

Strickler and Szilagyi-Jozsa deviate below the EBC method in the first half of the
measuring period and the Morton CRAE method above. Overall, the Granger-Grey
and Morton CRAE show much agreement with the EBC method.

Table 3: Summary statistics for the sixteen assessed evaporation methods.

TW BC MB Turc HS MK PT BREB

Mean 2.82 4.99 6.12 5.16 4.69 3.96 3.41 2.79
Std dev 0.34 0.12 0.28 1.01 1.09 0.90 0.60 0.54

Pen PM FAO MS BS SJ GG Mort EBC

Mean 4.09 3.44 3.97 3.53 2.69 2.63 3.25 3.99 3.70
Std dev 0.93 0.66 0.86 0.79 0.79 0.85 0.56 0.79 0.65

* TW: Thornthwaite (1948); BC: Blaney-Criddle; MB: McGuinnes-Bordne; HS: Hargreaves-Samani; MK: Makkink; PT:
Priesley-Taylor; BREB: Bowen Ratio Energy Balance; Pen: Penman (1948); PM: Penman-Monteith; FAO: FAO
Penman-Monteith derivation; MS: Matt-Shuttleworth; BS: Brutsaert-Strickler; SJ: Szilagyi-Jozsa; GG: Granger-Grey;
Mort: Morton CRAE; EBC: Energy Balance Closure.

Figure 17: Overview of the daily measured evaporation of the 16 assessed methods grouped per
category in every subplot.

To compare the assessed evaporation methods a correlation and r2 heatmap has
been produced and is depicted in Figure 18. The evaporation methods are showing
agreeable results for the correlation and r2 when comparing within their category. The
temperature-based methods have a correlation value above 0.8 and r2 value above
0.6 with one another. Furthermore, the Makkink, Turc and Hargreaves-Samani show
high values of the correlation and r2 results and the above discussed similarities
between the wind and resistances-based method also show high values for
correlation and r2. Despite the poor results of the Brutsaert-Strickler and Szilagyi-
Jozsa and other methods, agreeable results are found when compared with Priesley-
Taylor, BREB and one another. In comparison with the EBC method a couple of
evaporation methods have agreeable results, namely the Priesley-Taylor, BREB,
Brutsaert-Strickler, Granger-Grey and in lesser extent Morton CRAE and Szilagyi-
Jozsa.

28

Figure 18: Correlation (left) and r2 (right) heatmap of the assessed evaporation methods.

Regression plots of the energy balance closure with assessed evaporation
methods are produced in order to analyze the evaporation methods with the
incoming and outgoing fluxes. As the temperature-based evaporation methods only
fluctuate sparsely, they are depicted in Figure 19 with a straight line and do only
slightly respond to different input of available energy. The r2 values of the
temperature-based models are 0.04 or below. The radiation-based methods show
better results with high r2 values of 0.99 for Priesley-Taylor and 0.88 for the Bowen
Ratio Energy Balance method. Notably, the mostly recommended Penman-Monteith
results in an r2 value of 0.62. Furthermore, the Brutsaert-Strickler, Granger-Grey and
Morton CRAE produce agreeable r2 results of about 0.7 and higher.

29

Figure 19: Regression plots of the energy balance and assessed evaporation methods in which
Rn-G (available energy) is depicted versus the latent plus sensible heat fluxes. The dashed line
shows perfect agreement between available energy and the heat fluxes.

Further statistical analysis is shown in Table 4 where the sixteen methods of
evaporation are compared with the EBC method with Root Mean Square Error, Index
of Agreement, Nash-Sutcliffe efficiency and corresponding p-values with Pearson
correlation analysis. Only the temperature-based evaporation methods are
significantly different from the EBC method and five methods have a Nash-Sutcliffe
efficiency coefficient higher than zero, implicating agreement between the
measurements. The largest deviations of all four statistical models from the EBC
method are found with the McGuiness-Bordne and the best results of all four models
are computed with the Priesley-Taylor and Granger-Gray method. Other evaporation
methods with agreeable results are the Penman-Monteith, Morton CRAE and Matt-
Shuttleworth with positive values for the Nash-Sutcliffe efficiency coefficient, Root
Mean Square Error value of below 3 and Index of agreement values higher than 0.8.

30

Table 4: Overview of the results of the statistical analyses of the 16 evaporation methods
versus the EBC method.

TW BC MB Turc HS MK PT BREB

RMSE 6.05 7.89 13.75 8.95 6.89 3.74 1.66 4.98
IA 0.32 0.12 0.16 0.57 0.65 0.79 0.94 0.64
NSE -1.90 -3.92 -13.93 -5.33 -2.75 -0.11 0.78 -0.96
P-value 0.10 0.07 0.12 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

Pen PM FAO MS BS SJ GG Mort

RMSE 4.16 2.77 3.96 3.09 5.99 6.92 2.62 2.68
IA 0.76 0.85 0.75 0.83 0.64 0.59 0.86 0.88
NSE -0.37 0.39 -0.24 0.24 -1.83 -2.79 0.46 0.43
P-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
* RMSE: Root Mean Square Error; IA: Index of Agreement; NSE: Nash-Sutcliffe Efficiency; P-value: Calculated
Probability.

As stated earlier different values of the Priesley-Taylor coefficient can be selected
based on the location. Optimization of the coefficient results in a value of 1.36. In
Table 5 new statistical analysis is shown for the evaporation methods, which
incorporate the Priesley-Taylor coefficient. The Priesley-Taylor, Brutsaert-Strickler
and Szilagyi-Jozsa all are showing better result for the statistical analysis, wherein
the former results in near perfect score for the Index of Agreement and Nash-Sutcliffe
efficiency. Further statistical analysis has been implemented to compute the
difference between multiple approaches of calculating the Bowen ratio. As explained
in the methods section, the Bowen ratio has been calculated in scientific research
with at least four different approaches. Table 5 shows the statistical output of these
approaches. The results for the Bowen ratio calculated with the saturation vapor
pressure shows similar results with calculation of the actual vapor pressure. Both the
Bowen ratio calculated with equilibrium temperature and vapor pressure deficit show
more agreement with the EBC method, making the later the method with the best
results after the Priesley-Taylor.

Table 5: Results of the statistical analysis for the evaporation methods with optimized Priesley-
Taylor coefficient and different approaches of calculating the Bowen ratio.

PT new BS new SJ new BREB es BREB Te BREB VPD

RMSE 0.37 3.33 4.54 5.12 2.06 1.04
IA 1.00 0.85 0.75 0.63 0.93 0.98
NSE 0.99 0.12 -0.63 -1.07 0.67 0.91
P-value < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

4.3 Water storage model results
Water storage has been calculated for the period 7th of October until 21st of
December with evaporation of the EBC method as input, which will serve as the
baseline to which the other evaporation methods are compared. Figure 18 shows the
modeled water storage for the open pond and the sand dam. Usage for the open
pond WHS is calculated at 0.71 m3 day-1 and for the sand dam at 13.49 m3 day-1 and
average evaporation of 0.09 and 1.14 m3 day-1 respectively. The evaporative fracture

31

is 0.13 and 0.08 per m3 capacity for the open pond and sand dam respectively for the
period of research.

Figure 20: Modeled water storage and rainfall plots of an open pond (left) and sand dam (right).
The red line displays the boundary capacity after which evaporation would not occur in the sand
dam, yellow line is storage and bars represents rainfall.

Six evaporation methods have been selected on the basis of the statistical
analysis and categories, and contains one temperature-based, two radiation-based,
one wind and resistances-based and two actual evaporation methods. Table 6 shows
the deviation of evaporative fracture in percentages and Root Mean Square Error of
the selected evaporation methods to the EBC method. A range of -24 to almost 10 %
has been found for the open pond WHS for the period of 73 days and a range of -27
to almost 8 % for the sand dam. Therefore, on average per day the selection of
methods deviates up to 0.03 and 0.02 m3 of evaporation per cubic meter of WHS for
open pond and sand dam respectively. Subsequently, a deviation of usable water of
equivalent for the period of research of up to two and twenty-five persons for open
pond and sand dam respectively, are shown when selecting an evaporation method.
That is within 3.5 and 2.5 % of total harvesting fluxes. Highest Root Mean Square
Error has been calculated for the Thornthwaite method and lowest for the Penman-
Monteith and Priesley-Taylor method.

Table 6: Evaporative fracture of capacity of WHS and deviations for the six selected evaporation
methods compared to the EBC method, where OP denotes open pond, SA sand dam, EF
evaporative fracture and Dev the deviation from the EBC method. All values are in percentages
of capacity of the WHS.

 TW MK PT PM GG Mort
Dev EF OP -23.95 8.74 -7.79 -5.72 -11.90 9.87
RMSE OP 0.84 0.52 0.28 0.17 0.42 0.50
Dev EF SA -27.28 6.82 -7.98 -6.82 -12.31 7.92
RMSE SA 5.38 4.25 1.50 2.16 2.19 3.24

* All evaporation methods in table have P-value < 0.01 in comparison with the EBC method.

32

5 Discussion

5.1 Evaporation methods implications
Sixteen evaporation methods are categorized into temperature-based, radiation-
based, wind and resistances-based, and actual evaporation. Evaporation of the
modeled water storage with these methods have been calculated for the period of 7th
of October until 21st of December 2016 and compared with one another with
statistical analysis. Due to measurement failure, daily climate data of an incomplete
sequence of thirteen days is retrieved for the first rainy season of 2017. Rainfall
results for the second rainy season was below average with standardized anomaly of
-1.6. The region of Kitui differs in elevation and rainfall in different measuring areas
can show different results. Temperature was relatively stable for the period and the
average measured temperature agrees with the average of historical data for the
measured months. Diurnal fluxes show similar results compared to Tanny et al.
(2007), where the sensible heat flux fluctuates just above 0 MJ day-1 and, if
smoothed, agreeable radiation curve. However, the latent heat flux is not measured
with an Eddy Covariance device and instead calculated with the energy-based
Penman-Monteith method. Subsequently, the results of the latent heat flux strongly
follow the input of net radiation and declines in the early evening, whereas Tanny et
al. (2007) show a higher latent heat flux in the evening. The equilibrium temperature
is calculated on the assumption that it is lower than the air temperature. Huntington
et al. (2011), show similar results in which equilibrium temperature deviations
become larger when temperatures are between 15 to 25 ºC.

In general, the evaporation methods within their category are behaviorally similar.
Temperature-based methods fluctuate slightly as their only input, temperature, is
relatively stable in the period of measurement. The wind and resistances methods
are very similar as they are derived from the same equation. The Priesley-Taylor
shows the most agreement with the EBC method. While Brutsaert-Strickler and
Szilagyi-Jozsa are derived from the Priesley-Taylor method, they show much less
agreement. Due to the similar behavior, evaporation methods show high correlation
and r2 values when comparing with other evaporation methods of the same category.
Summarizing results of numerous studies for calculating evaporation, McMahoon et
al. (2013) shows that the ratio of mean of Priesley-Taylor to mean of Penman-
Monteith has similar results in specific cases to this study. The ratio is for a semi-arid
region in India 1.09 and 1.02 for an arid region in India, while this study shows a ratio
of 0.99 and 1.07 for adjusted Priesley-Taylor alpha constant. Moreover, the Blaney-
Criddle high ratio to Penman-Monteith of 1.44 in semi-arid India agrees with the high
value of 1.35 found in this research.

When comparing the various evaporation methods with the EBC method, it has
both an advantage and a disadvantage. Energy fluxes can easier be compared,
however calculation of the EBC method can lead to biases, as it is not calculated by
input of a single instrument, like an eddy covariance instrument. Every sensor, like
temperature or wind speed measurements, has their own accuracy and resolution

33

summarized in Table 1. Additionally, calculation of the temperature gradient for the
sensible heat flux and Bowen ratio can be computed by selecting different
measurement height, potentially leading to different outcomes. Drexler et al. (2004)
and Nie et al. (1992), argue that methods using sensible heat or BREB
measurements reduce accuracy when the gradient between sensors approaches
zero. When the gradient of the Bowen ratio is lower than 0.4, Nie et al. (1992) argue
that small differences in the gradient can cause large percentage differences in latent
heat flux and when Bowen ratio reaches -1, unrealistic values can be found.
However, in this research no unrealistic values were computed when the Bowen ratio
reaches a value lower than 0.4. Furthermore, DeMeo et al. (2003) show agreeable
results when comparing energy balance methods with eddy covariance and
calculated an r2 value of 0.99. Nagler et al. (2005), argue that unlike the eddy
covariance method, the validity of the latent and sensible heat calculations of the
energy balance methods cannot be checked for closure. Further research is needed
to validate the EBC method.

In comparison with the EBC method a couple of evaporation methods have
agreeable results of correlation and r2 values higher than 0.7 and 0.6. These
methods are the Priesley-Taylor, BREB, Brutsaert-Strickler, Granger-Grey and in
lesser extent Morton CRAE and Szilagyi-Jozsa. The Priesley-Taylor, Granger-Gray
and the Bowen Ratio Energy Balance show regression fit with all observations close
to the regression line. The temperature-based methods are performing poorly with
the regression plot and observations point to no feedback when available energy
changes. Consequently, the regression line is flat. Similar results for the Priesley-
Taylor method where shown by the research of Rosenberry et al. (2007) in which
evaporation methods are compared with the BREB vapor pressure deficit variant.
Rosenberry et al. (2007), show an r2 value of 0.97 and is close to the value of 0.99
for the r2 calculated in this research. The temperature-based methods Thornthwaite
and Blaney-Criddle show notably more agreeable results with r2 of 0.73 in contrast to
0.03 and 0.04 retrieved in this study for Thornthwaite and Blaney-Criddle
respectively.

Furthermore, the statistical methods show agreeable results for the Granger-
Gray, Penman-Monteith, Matt-Shuttleworth and Morton CRAE. Notably, the Priesley-
Taylor with the highest r2 performs the best according to the statistical methods. The
Makkink method has, next to the close regression fit to 1:1, an agreeable Index of
Agreement value of 0.77 and Winter et al. (1996), also show agreeable results when
comparing with EBC method. The temperature-based methods have the lowest
results for the statistical methods. For this research the original value of 1.26 of the
Priesley-Taylor alpha coefficient has been used. Optimization of this coefficient
results in a value of 1.36 and is far below the value between 1.70 and 1.75 for semi-
arid areas proposed by Jensen et al. (1990). With the new alpha coefficient the
RMSE, NSE, IA and r2 show that the Brutsaert-Strickler, Szilagyi-Jozsa and Priesley-
Taylor methods show better results. The selected approach of calculating the Bowen
ratio is of importance. Statistical analysis results improve when using vapor pressure

34

deficit or a calculation based on equilibrium temperature instead of actual or
saturation vapor pressure gradient.

5.2 Water storage implications
With the results of the statistical analysis six evaporation methods have been
selected to analyze their sensitivity to water storage. Of these six methods one
temperature-based, two radiation-based, one wind and resistances-based and two
actual evaporation methods have been selected. Only one wind and resistances-
based method is chosen, because they show similar behavior and are all derived
from one equation. The results of the water storage model show that water stored of
about 13.4 % of open pond capacity and about 7.6 % of sand dam capacity is
evaporated in the period of 70 days. Deviations of the evaporative fracture of the six
methods to the evaporative fracture of the EBC method range from -24 to 10 % for
the open pond and -27 to 8 % for the sand dam. The deviation in fluxes amount up to
3.5 and 2.5 % of total water harvested in the period of 70 days for open pond and
sand dam respectively. While these values are for a 70-day period, they can grow
larger if longer time periods are assigned. However, the sensitivity of the selected
evaporation method on modeled water storage with longer time periods will be
smaller for sand dams than open pond in which evaporation will not be assumed zero
below the depth of 0.9 meter. Craig (2006) strengthens this issue by analyzing the
influence of storage size, depth and water temperature to open pond evaporation and
concludes that larges system will have less evaporative losses, with a decline in
intensity of up to 5 %. While this research uses calculated evaporation from
meteorological parameters measured in the study area, it can potentially differ when
measuring the factors above open water or a riverbed. More specifically, water has a
different heat capacity and albedo, and can therefore alter the calculations. Condie &
Webster (1997), argue that gradients of temperature, humidity and wind speed above
a water body can significantly influence evaporation. Depending on the WHS and the
desired range of accuracy a sensitivity analysis of evaporative fracture resulted by
evaporation methods of modeled water storage can be implemented. Selecting an
evaporation method can lead up to 27 % of deviation of evaporative fracture.
However, these deviations are a small fracture compared to the total water harvested
flux.

35

6 Conclusion
For this research sixteen method of evaporation are analyzed in order to assess the
influence of the methods on modeled water storage, whether the methods are
complex or solely based on one meteorological factor. When analyzing the behavior
of the four categories of evaporation methods, the temperature-based methods are
relatively stable due to minor fluctuations in daily temperature. Subsequently, they
show a standard deviation between 0.21 and 0.31 mm day-1. Evaporation methods,
which also have radiation and other meteorological factors as input, show more
sensitivity to daily conditions and have standard deviations between 0.7 and 1.2 mm
day-1.

Agreeable results of correlation coefficients and r2 values have been calculated
by comparing evaporation methods within their category. The r2 values of the heat
fluxes compared with the available energy show agreeable results for the following
methods: Priesley-Taylor (0.99), Bowen Ratio Energy Balance (0.88), Brutsaert-
Strickler (0.71), Granger-Gray (0.95) and Morton CRAE (0.76). Evaporation methods
with regression line close to the energy balance closure fit of 1:1 are Makkink,
Penman-Monteith, Matt-Shuttleworth, Granger-Gray and Morton CRAE.
Temperature-based evaporation methods show horizontal regression lines, as the
methods are not sensitive to the available energy. The results of the statistical
analysis show agreeable output for the Penman-Monteith, Priestley-Taylor, Granger-
Gray and Morton CRAE. All evaporation methods, except the temperature-based
methods, have significant p-values. Optimizing the Priesley-Taylor coefficient results
in a value of 1.36. Sensitivity analysis for the multiple BREB approaches shows the
most agreeable results for BREB calculated with vapor pressure deficit.

For the modeled water storage of the sand dam deviation of the evaporative
fracture of -27 and 8 % are computed and for the open pond -24 and 10 %. The
largest deviations are calculated with the Thornthwaite method. The results show
values of within 3.5 and 2.5 % of total water harvested for the period for the open
pond and sand dam respectively. Only when dealing with smaller fluxes of water
storage or evaporation calculation accuracy, the choice of evaporation method is
important. This study shows that the best results for the semi-arid region of the study
area in Kitui are calculated with the calibrated Priestley-Taylor method and the BREB
method computed with vapor pressure deficit. Other methods showing agreeable
results are Priesley-Taylor, Granger-Gray and Morton CRAE. When dealing with
limited data, e.g. one or two meteorological factors, the Priesley-Taylor shows the
best results and otherwise Thornthwaite method if only temperature data is available.

36

Appendix
A1 List of equations

Number Equation name Page
1 Energy balance 8
2 Inverse relative distance Earth-Sun (𝑑!) 10
3 Solar declination (𝛿) 10
4 Latitude in radians (𝜑) 10
5 Sunset hour angle (𝜔) 10
6 Length of day (𝐿) 10
7 Extraterrestrial radiation (𝑅!) 11
8 Clear sky solar or shortwave radiation (𝑅!") 11
9 Net shortwave radiation (𝑅!") 11
10 Net longwave radiation (𝑅!") 11
11 Net radiation (𝑅!) 11
12 Wind speed at height of 2 m (𝑈!) 12
13 Aerodynamic resistance (𝑟!) 12
14 (Bulk) surface or canopy resistance (𝑟!) 12
15 Dew point temperature (𝑇!) 12
16 Latent heat of vaporization (𝜆) 12
17 Psychrometric constant (𝛾) 13
18 Tetan’s equation (𝑒º) 13
19 Saturation vapor pressure (𝑒!) 13
20 Actual vapor pressure (𝑒!) 13
21 Vapor pressure deficit (𝑉𝑃𝐷) 13
22 Slope of saturation vapor pressure curve (∆) 13
23 Wind speed function (𝐸!) 13
24 Equilibrium temperature (𝑇!) 14
25 Sensible heat flux (𝐻) 14
26 Thornthwaite method 15
27 Blaney-Criddle method 15
28 McGuinnes-Bordne method 16
29 Turc method 16
30 Hargreaves-Samani method 16
31 Makkink method 16
32 Priesley-Taylor method 16
33 Bowen ratio 17
34 Bowen Ratio Energy Balance method 17
35 Penman method 17
36 Penman-Monteith method 17
37 FAO Penman-Monteith method 18
38 Matt-Shuttleworth method 18
39 Actual evaporation (complementary relationship) 18
40 Brutsaert-Strickler method 19

37

41 Szilagyi-Jozsa method 19
42 Granger-Gray method 19
43 Morton CRAE method 20
44 Pearson product correlation 20
45 Linear regression 20
46 Index of Agreement (𝐼𝐴) 21
47 Root Mean Square Error (𝑅𝑀𝑆𝐸) 21
48 Nash-Sutcliffe efficiency coefficient (𝑁𝑆𝐸) 21

38

A2 Nomenclature

Symbol Description Unit
𝒄 Constant used in Blaney-Criddle evaporation method -
𝒄𝟏 Constant used in Makkink evaporation method -
𝒄𝟐 Constant used in Makkink evaporation method mm day-1
𝒄𝒑 Specific heat MJ kg-1 ºC-1

𝒅𝒓 Inverse relative distance Earth-Sun -
𝑬

𝑬𝒂𝒄𝒕
𝑬𝒑𝒐𝒕
𝑬𝒘𝒆𝒕
𝑬𝑻

Evaporation
Actual evaporation
Potential evaporation
Wet evaporation
Reference crop evapotranspiration

mm day-1

mm day-1

mm day-1

mm day-1
𝑬𝒂 Winds speed function mm day-1
𝒆𝒗 Enthalpy of vaporization J kg-1

𝒆º
𝒆𝒂
𝒆𝒔
𝒆𝒔*

Tetan’s equation
Actual vapor pressure
Saturation vapor pressure
Saturation vapor pressure with equilibrium temperature

kPa
kPa
kPa

𝒇𝒗 Constant in Morton’s method W mbar-1
𝑮 Ground heat flux MJ day-1
𝑮𝒈 Ratio actual to potential evaporation -
𝑮𝒔𝒄 Solar constant MJ min-1
𝒉 Height of crop m
𝑯 Sensible heat flux MJ day-1

𝑱 Julian day -
𝑰 Thermal heat index -
𝑲 Von karman’s constant -
𝑳 Length of the day hour
𝑳𝑨𝑰 Leaf area index m2 m-2

𝑷 Atmospheric pressure kPa
𝒑𝒚 Ratio actual and total annual daytime hours -
𝒓

𝒓𝒂
𝒓𝒄𝟓𝟎
𝒓𝒍
𝒓𝒔

Resistance
Aerodynamic resistance
Resistance constant at height of 50 meters
Bulk stomatal resistance of well-illuminated leaf
(Bulk) surface or canopy resistance

s m-1

s m-1

s m-1

s m-1

𝑹
𝑹𝒆
𝑹𝒏
𝑹𝒏𝒍
𝑹𝒏𝒔
𝑹𝒔
𝑹𝒔𝒐

Radiation
Extraterrestrial radiation
Net radiation
Net longwave radiation
Net shortwave radiation
Solar radiation
Clear sky solar radiation

MJ day-1

MJ day-1

MJ day-1

MJ day-1

MJ day-1

MJ day-1

𝑹𝒘 Gas constant for water vapor J K-1 kg-1

39

𝑹𝑯 Relative humidity %
𝑻

𝑻𝒂
𝑻𝒅
𝑻𝒆
𝑻𝑲
𝑻𝒔

Temperature
Air Temperature
Dew point temperature
Equilibrium temperature
Temperature in Kelvin
Surface temperature

ºC
ºC
ºC
ºK
ºC

𝑼𝒛 Wind speed at height z m s-1

𝑽𝑷𝑫 Vapor pressure deficit kPa
𝒛

𝒛𝒉
𝒛𝒎
𝒛𝒐𝒉
𝒛𝒐𝒎

Elevation or height above sea level
Height of humidity measurements
Height of wind speed measurements
Roughness length governing heat and vapor transfer
Roughness length governing momentum transfer

m
m
m
m
m

∝𝑻𝑾 Function of thermal heat index -
∝𝑷𝑻 Priesley-Taylor coefficient -
𝜷 Constant in Morton’s method ºC
𝜸 Psychrometric constant kPa ºC-1

𝜹 Solar declination rad
𝚫 Slope of saturation vapor pressure curve kPa ºC-1

𝜺 Ratio molecular weight of water vapor/dry air -
𝝐𝒔 Land surface emissivity in Morton’s method -
𝝀 Latent heat of vaporization MJ KG-1
𝝈 Stefan-Boltzmann constant W day-1 ºK-4

𝝋 Latitude rad
𝝎 Sunset hour angle rad
*Symbols used for the statistical analysis are not included in this table.

40

A3 Measuring devices supplement
Rainfall is measured in a tipping bucket rain gauge in which a pulse is sending every
0.1mm of rainfall per square meter. The aerodynamically designed rain collector is
shaped to minimalize errors when sampling wind driven rain and meets the
specifications of the World Meteorological Organization. In order to measure the wind
speed an anemometer is constructed on the weather station at the top with a height
of 2 meters. The anemometer is programmed to log the average wind speed and
maximum wind speed over the selected interval by sending pulses to the data logger.
Furthermore, two temperature and humidity probes are constructed to the weather
station and is designed to capture atmospheric temperature and relative humidity
measurements. Both sensors are set in one device with a thin film polymer sensor for
humidity and a resistive platinum sensor for temperature measurements. The devices
are set at a height of 1.25m and 1.75m. Solar radiation is measured with a net
radiometer. The net radiometer consists of a thermopile sensor, which measures the
algebraic sum of incoming and outgoing radiation. It can measure both short and
long wave radiation. The measured incoming radiation received from a 180 degrees
view of the hemisphere consists of long-wave radiation from the sky, direct and
diffusive solar radiation. The measured outgoing radiation received from the surface
of the soil consists of reflected solar radiation and long-wave terrestrial radiation. The
radiometer is sensitive to wind and a theoretical correction can be made calculating
the corrected solar irradiance with the following equation:

 𝐸!"#$% (!"##) = 𝐸!"#$% ∙ (1 + 𝑥 ∙ 𝑣

!
!) (3)

where 𝑥 is an empirical constant of approximately 0.01 and 𝑣 the wind speed in m/s.
Next to the net radiometer another radiation measuring device, a pyranometer, is
attached to the weather station. The pyranometer measures solar radiation and is a
high output thermally stable sensor. It gives a voltage output that is converted to
solar radiation in watt per square meter. Lastly, a barometer is constructed on the
weather station and measures the atmospheric pressure. This device converts volt to
pressure.

Next to the devices attached on the pole there are also the subsurface related
measurements. Water content reflectometers are placed in the soil in order to
measure the soil moisture. This device consists of two stainless steel rods that are
connected, in order to supply power, to a circuit board. Measurements are conducted
by sending a wave signal from one rod to another. The travel time of the wave
between the rods is depended on the dielectric permittivity of the soil. The dielectric
permittivity itself is depended on the water content of the soil. The soil heat flux is
measured with the Hukseflux plate and is placed in the soil. This device uses a
thermopile to measure temperature gradients across the plate. The output voltage of
the Hukseflux is proportional to the differential temperature. To measure the
temperature in the soil a temperature probe is buried in the soil and is only suitable
for shallow burial. This probe uses a thermistor to measure soil temperature. A

41

thermistor measures the electrical resistance that is depended on the temperature.
To avoid thermal conduction it is placed horizontally.

42

A4 Main script

Main script for the evaporation model and water storage model ####
Timothy Tiggeloven ####
AWS_main.py ####
Python 3.5.0 ####

Analyzes data from automatic weather station Kitui, Kenya ####

import time
start_time = time.time()
print ('starty start')

import modules
import csv
import datetime
import matplotlib.dates as dt
import numpy as np
import pandas as pd
from scipy.stats import pearsonr

import self-made functions, plots, storage model and toolbox
import Evap_functions as EF
import Evap_toolbox as tool
import Evap_plots as Eplot
import Evap_WHS as WHS

'''
Part I: Load input
====================
'''

df = pd.read_csv('Kenya_Meteo6.csv', encoding = "ISO-8859-1")
Data = df.values.tolist()
Date = np.array(Data)[4:,0]
DateTime, DateYear, DateMonth, Year, Month = [], [], [], [], []
for i in Date:
 y = datetime.datetime.strptime(i, '%d/%m/%y %H:%M')
 DateTime.append(y)
 DateYear.append(datetime.datetime.timetuple(y).tm_yday)
 DateMonth.append(datetime.datetime.timetuple(y).tm_mday)
 Year.append(datetime.datetime.timetuple(y).tm_year)
 Month.append(datetime.datetime.timetuple(y).tm_mon)

'''
Part II: Decleration of variables
================================
'''

declaring seperate lists for selected parameters
#**#
#*** Make sure it starts on the first measurement of the day***#
#**#
start = 351 - 1 # start of selected period
Rn_end = 7458 - start # end of selected period
end = 9089 - 1 # end of selected period
Data = np.array(Data)[start:end,1:].astype(float)

DateNum = dt.date2num(DateTime) # convert dates into numeric
DayNum = DateYear[start:end] # number of the day of the year
DayNumMonth = DateMonth[start:end] # number of the day of the month

43

YearNum = Year[start:end] # number of the year
MonthNum = Month[start:end] # number of the month of the year
Time = DateNum[start:end] # assigns time for period

Record = Data[:,0] # number of measurement
Bat_V = Data[:,1] # battery voltage [V]
Bat_T = Data[:,2] # battery temperature [C]
Tsoil_1 = Data[:,3] # temperature sediment at 0.05m depth [C]
Tsoil_2 = Data[:,4] # temperature soil at 0.05m depth [C]
Tair_1 = Data[:,5] # temperature at height 1.25m [C]
Tair_2 = Data[:,6] # temperature at height 2m [C]
RH_1 = Data[:,7] # relative humidity at height 1.25m [%]
RH_2 = Data[:,8] # relative humidity at height 2m [%]
Airpress_av = Data[:,9] # average air pressure [hPa]
Airpress_corr = Data[:,10] # corrected average air pressure [hPa]
Pyrano = Data[:,11] # solar radiation at height 1.5m [W/m^2]
#Rn_obs = Data[:,12] # obs net radiation at height 1.5m [W/m^2]
Rn_corr = Data[:Rn_end,13] # corr net radiation at height 1.5m [W/m^2]
SM_uS1 = Data[:,14] # transmittivity sediment at depth 0.05m [us]
SM_O1 = Data[:,15] # moisture sediment at depth 0.05m [no unit]
SM_uS2 = Data[:,16] # transmittivity soil at depth 0.05m [us]
SM_O2 = Data[:,17] # moisture soil at depth 0.05m [no unit]
SM_uS3 = Data[:,18] # transmittivity soil at depth 0.1m [us]
SM_O3 = Data[:,19] # moisture soil at depth 0.1m [no unit]
HF_1 = Data[:,20] # heat flux sediment at depth 0.05m [W/m^2]
HF_2 = Data[:,21] # heat flux soil at depth 0.05m [W/m^2]
Rain = Data[:,22] # precipitation at height 1m [mm]
W_Speed = Data[:,23] # wind speed at height 2.25m [m/s]
W_Dir = Data[:,24] # wind direction at height 2.25m [degrees]

'''
Part III: Transforming data
================================
'''

transform data to daily mean, min or max
Time_day = tool.todaily(Time, Time, 'min')
Tair_1max = tool.todaily(Tair_1, Time, 'max')
Tair_1min = tool.todaily(Tair_1, Time, 'min')
Tair_1mean = tool.todaily(Tair_1, Time, 'mean')
Tair_2max = tool.todaily(Tair_2, Time, 'max')
Tair_2min = tool.todaily(Tair_2, Time, 'min')
RH_1max = tool.todaily(RH_1, Time, 'max')
RH_1min = tool.todaily(RH_1, Time, 'min')
RH_1mean = tool.todaily(RH_1, Time, 'mean')
RH_2max = tool.todaily(RH_2, Time, 'max')
RH_2min = tool.todaily(RH_2, Time, 'min')
RH_2mean = tool.todaily(RH_2, Time, 'mean')
Rn_corr_mean = tool.todaily(Rn_corr, Time, 'mean')
HF_2mean = tool.todaily(HF_2, Time, 'mean')
W_Speed_mean = tool.todaily(W_Speed, Time, 'mean')
Airpress_corr_mean = tool.todaily(Airpress_corr, Time, 'mean')
Rs_mean = tool.todaily(Pyrano, Time, 'mean')
dayofyear = tool.todaily(DayNum, Time, 'min')
dayofmonth = tool.todaily(DayNumMonth, Time, 'min')
numofyear = tool.todaily(YearNum, Time, 'min')
monthofyear = tool.todaily(MonthNum, Time, 'min')
Tsoil_2mean = tool.todaily(Tsoil_2, Time, 'mean')
Tsoil_2max = tool.todaily(Tsoil_2, Time, 'max')
Tsoil_2min = tool.todaily(Tsoil_2, Time, 'min')
Rain_day = tool.todaily(Rain, Time, 'sum')
Tsurface = [((i + j) / 2 + (k + l) / 2) / 2 for i,j,k,l in zip(Tair_1min,\
 Tair_1max, Tsoil_2min, Tsoil_2max)]

44

replace nan values with daily mean/max/min and between gaps
W_Speed = tool.nanreplace(W_Speed, Time, 'mean')

watt/m2 to MJ/m2/day
Rn_corr_mean = [float(i) * 0.0864 for i in Rn_corr_mean]
Rn_corr = [float(i) * 0.0864 for i in Rn_corr]
Rs_mean = [float(i) * 0.0864 for i in Rs_mean]
HF_2mean = [float(i) * 0.0864 for i in HF_2mean]
HF_1 = [float(i) * 0.0864 for i in HF_1]
HF_2 = [float(i) * 0.0864 for i in HF_2]

'''
Part IV: Evaporation calculations
==================================
'''

Priestley-Taylor constant [-]
alpha = 1.26

calculate extraterrestrial radiation
suneq = tool.sunrise(dayofyear)
Re_day = suneq[1]

calculate 15 min average fao penman-monteith evaporation
FAO_soil = EF.FAO_15min(W_Speed, Tair_1, RH_1, Rn_corr, HF_2, Airpress_corr)
FAO_sediment = EF.FAO_15min(W_Speed, Tair_1, RH_1, Rn_corr, HF_1, Airpress_corr)

calculate meteorological variables, thornthwaite parameters and breb variables
Tmeanmax = [(i + j) / 2 for i,j in zip(Tair_1max, Tair_2max)]
Tmeanmin = [(i + j) / 2 for i,j in zip(Tair_1min, Tair_2min)]
RHmeanmax = [(i + j) / 2 for i,j in zip(RH_1max, RH_2max)]
RHmeanmin = [(i + j) / 2 for i,j in zip(RH_1min, RH_2min)]
RH_2mean = [(i + j) / 2 for i,j in zip(RH_2min, RH_2max)]
meteo_var = tool.meteo(Tair_1max, Tair_1min, RH_1max, RH_1min,\
 Airpress_corr_mean, W_Speed_mean, Tair_2max, Tair_2min,\
 Tsoil_2min, Tsoil_2max)
breb1 = meteo_var
breb2 = tool.meteo(Tair_2max, Tair_2min, RH_2max, RH_2min, Airpress_corr_mean,\
 W_Speed_mean, Tair_2max, Tair_2min, Tsoil_2min, Tsoil_2max)
breb3 = tool.meteo(Tmeanmax, Tmeanmin, RHmeanmax, RHmeanmin, Airpress_corr_mean\
 , W_Speed_mean, Tair_2max, Tair_2min, Tsoil_2min, Tsoil_2max)
brebsoil = tool.meteo(Tsoil_2max, Tsoil_2min, RHmeanmax, RHmeanmin,\
 Airpress_corr_mean, W_Speed_mean, Tair_2max, Tair_2min,\
 Tsoil_2min, Tsoil_2max)

replace net radiation values 2017 with calculated values of solar radiation
Rn_calc = tool.solartonet(Rn_corr_mean, Rs_mean, Re_day, meteo_var[8],\
 Tair_1max, Tair_1min)
Rn_corr_mean = Rn_calc[0]
Rn_bin = Rn_calc[2]

calculate evaporation depended on temperature
TW_mon = EF.TW_monthly(Tair_1mean, dayofyear, dayofmonth, monthofyear,\
 numofyear)
TW_day = EF.TW_daily(Tair_1mean, dayofyear, dayofmonth, monthofyear, numofyear)
BC_day = EF.BC(meteo_var)
MB_day = EF.MB(Re_day, meteo_var)

calculate evaporation depended on temperature and radiation
HS_day = EF.HS(Rs_mean, meteo_var)
JH_day = EF.JH(Rs_mean, meteo_var)
Turc_day = EF.Turc(Rs_mean, meteo_var)
MK_day = EF.MK(Rs_mean, meteo_var)
PT_day = EF.PT(Rn_corr_mean, HF_2mean, meteo_var, alpha)

45

calculate evaporation with resistances parameters
FAO_day = EF.FAO_daily(Rn_corr_mean, HF_2mean, meteo_var)
MS_day = EF.MS(Rn_corr_mean, meteo_var)
Penman_day = EF.Penman(Rn_corr_mean, meteo_var)
PM_day = EF.PM(Rn_corr_mean, HF_2mean, meteo_var)

calculate actual evaporation, complementary relationship
BS_day = EF.BS(Rn_corr_mean, meteo_var, alpha)
GG_day = EF.GG(Rn_corr_mean, HF_2mean, meteo_var)
Mort_day = EF.Morton(Rn_corr_mean, meteo_var, Penman_day)
SJ_day = EF.SJ(Rn_corr_mean, HF_2mean, Airpress_corr_mean, W_Speed_mean,\
 meteo_var, Penman_day, alpha)

calculate multiple BREB evaporation
BREB_bin = EF.BREB(Rn_corr_mean, HF_2mean, Penman_day, breb1, breb2, breb3,\
 brebsoil)
BREB_day = BREB_bin[0]
BREB_es = BREB_bin[1]
BREB_vpd = BREB_bin[2]
BREB_te = BREB_bin[3]

convert reference evaporation per 15 min measurement to daily measurement
FAO_soil_chunk_mean = tool.todaily(FAO_soil, Time, 'mean')

'''
Part V: Statistics
==============================
'''

prepare data for symmary statistics of the parameters
parameters = [Tair_1, meteo_var[0], meteo_var[17], RH_1mean, RH_2mean,\
 Rn_corr_mean, meteo_var[3], HF_2mean]
calc_par = [Re_day, meteo_var[12], meteo_var[1], meteo_var[2], meteo_var[4],\
 meteo_var[8], meteo_var[9], meteo_var[10], meteo_var[14],\
 meteo_var[15]]
headers1 = ['T1', 'T2', 'RH1', 'RH2', 'Rs', 'Rn', 'Ws', 'G']
headers2 = ['Re', 'Td', 'lv', 'psy', 'es', 'ea', 'VPD', 'slope', 'ra', 'H']

'''
print the summary statistics
def printstats(head, par):
 for i,j in zip(head, par):
 print("%s mean: %s" % (i,np.nanmean(j)))
 print("%s std: %s" % (i,np.nanstd(j)))
printstats(headers1, parameters)
printstats(headers2, calc_par)
print("Rain sum: %s" % np.nansum(Rain_day))
'''

Ea_day = []
for i,j in zip(meteo_var[3], meteo_var[9]):
 Ea = (1.313 + 1.381 * i) * j
 Ea_day.append(Ea)

calculate equilibrium heat flux (Rn, lv, penman, psy, Ta, ea, steps, sign)
Te = tool.equitemp(Rn_corr_mean, meteo_var[1], Penman_day, meteo_var[2],\
 meteo_var[0], meteo_var[8])
Ta = meteo_var[0]
He = []
for i,j,k in zip (Ta, Te, meteo_var[14]):
 z = 1.2 * 1.013 * pow(10, -3) * ((i - j) / k)
 He.append(z)

46

EBC calculation
tmean = meteo_var[0]
RG = [i - j for(i,j) in zip(Rn_corr_mean, HF_2mean)]
EBC_day = [(i - j) / k for(i,j,k) in zip(RG, meteo_var[15], meteo_var[1])]

optimal alpha (PT, BS, SJ)
alpha_list = []
for i,j,k,l,m,n in zip(meteo_var[10], meteo_var[2], Rn_corr_mean, HF_2mean,\
 meteo_var[1], EBC_day):
 z = n / ((i / (i + j)) * (k - l) / m)
 alpha_list.append(z)

alpha_new = np.nanmean(alpha_list)
PT_opt = EF.PT(Rn_corr_mean, HF_2mean, meteo_var, alpha_new)
BS_opt = EF.BS(Rn_corr_mean, meteo_var, alpha_new)
SJ_opt = EF.SJ(Rn_corr_mean, HF_2mean, Airpress_corr_mean, W_Speed_mean,\
 meteo_var, Penman_day, alpha_new)

alpha_arid = 1.7
PT_arid = EF.PT(Rn_corr_mean, HF_2mean, meteo_var, alpha_arid)
BS_arid = EF.BS(Rn_corr_mean, meteo_var, alpha_arid)
SJ_arid = EF.SJ(Rn_corr_mean, HF_2mean, Airpress_corr_mean, W_Speed_mean,\
 meteo_var, Penman_day, alpha_arid)

prepare data for EBC plots
TW_EH = [i * j + k for(i,j,k) in zip(TW_day, meteo_var[1], meteo_var[15])]
BC_EH = [i * j + k for(i,j,k) in zip(BC_day, meteo_var[1], meteo_var[15])]
MB_EH = [i * j + k for(i,j,k) in zip(MB_day, meteo_var[1], meteo_var[15])]
Turc_EH = [i * j + k for(i,j,k) in zip(Turc_day, meteo_var[1], meteo_var[15])]
HS_EH = [i * j + k for(i,j,k) in zip(HS_day, meteo_var[1], meteo_var[15])]
MK_EH = [i * j + k for(i,j,k) in zip(MK_day, meteo_var[1], meteo_var[15])]
PT_EH = [i * j + k for(i,j,k) in zip(PT_day, meteo_var[1], meteo_var[15])]
BREB_EH = [i * j + k for(i,j,k) in zip(BREB_day, meteo_var[1], meteo_var[15])]
Pen_EH = [i * j + k for(i,j,k) in zip(Penman_day, meteo_var[1], meteo_var[15])]
PM_EH = [i * j + k for(i,j,k) in zip(PM_day, meteo_var[1], meteo_var[15])]
FAO_EH = [i * j + k for(i,j,k) in zip(FAO_day, meteo_var[1], meteo_var[15])]
MS_EH = [i * j + k for(i,j,k) in zip(MS_day, meteo_var[1], meteo_var[15])]
BS_EH = [i * j + k for(i,j,k) in zip(BS_day, meteo_var[1], meteo_var[15])]
SJ_EH = [i * j + k for(i,j,k) in zip(SJ_day, meteo_var[1], meteo_var[15])]
GG_EH = [i * j + k for(i,j,k) in zip(GG_day, meteo_var[1], meteo_var[15])]
Mort_EH = [i * j + k for(i,j,k) in zip(Mort_day, meteo_var[1], meteo_var[15])]
diff = [i-j for(i,j) in zip(PM_EH, RG)]

prepare data frame for correlation, r2 and more
headers = ['TW','BC','MB','Turc', 'HS', 'MK', 'PT', 'BREB', 'Pen', 'PM', 'FAO',\
 'MS','BS','SJ','GG','Mort','EBC']
Evapdf = pd.DataFrame(np.column_stack([TW_day,BC_day,MB_day,Turc_day,HS_day,\
 MK_day,PT_day,BREB_day,Penman_day,PM_day,FAO_day,MS_day,\
 BS_day,SJ_day,GG_day,Mort_day,EBC_day]), columns=headers)

corr = Evapdf.corr()
rsq = pow(corr, 2)
std = Evapdf.std()
mean = Evapdf.mean()
sqr = pow(Evapdf, 0.5)
meansqr = sqr.mean()

calculate slope of every component in dataframe
EBC = Evapdf[['EBC']]
slopes = pd.DataFrame(np.linalg.pinv(EBC.T.dot(EBC)).dot(EBC.T).\
 dot(Evapdf.fillna(0)),['Slope'], Evapdf.columns)

headers_new = ['TW','BC','MB','Turc','HS','MK','PT','BREB','Pen','PM','FAO',\
 'MS','BS','SJ','GG','Mort','PTopt','BSopt','SJopt','PTarid',\

47

 'BSarid','SJarod','BRERB_es','BRERB_vpd','BRERB_te','EBC']
Evapdf_new = pd.DataFrame(np.column_stack([TW_day,BC_day,MB_day,Turc_day,\
 HS_day,MK_day,PT_day,BREB_day,Penman_day,PM_day,\
 FAO_day,MS_day,BS_day,SJ_day,GG_day,Mort_day,PT_opt,\
 BS_opt,SJ_opt,PT_arid,BS_arid,SJ_arid,BREB_es,\
 BREB_vpd,BREB_te,EBC_day]), columns=headers_new)

mean_new = Evapdf_new.mean()

calculate RMSE, NSE and IA and store in dataframe
RMSEdf, IAdf, NSdf, PVdf = [], [], [], []
row, rowIA, rowNS, rowPV = [], [], [], []
square, IAsquare, NSsquare = 0, 0, 0
for h1 in headers_new:
 for h2 in headers_new:
 for i,j in zip(Evapdf_new[h1],Evapdf_new[h2]):
 square += pow(i - j, 2)
 IAsquare += pow(abs(i - mean_new[h2]) + abs(j - mean_new[h2]), 2)
 NSsquare += pow(i - mean_new[h1], 2)

 MSE = square / len(h1)
 RMSE = pow(MSE, 0.5)
 IA = 1 - (square / IAsquare)
 NS = 1 - (square / NSsquare)
 PC, PV = pearsonr(Evapdf_new[h1], Evapdf_new[h2])

 row.append(RMSE), rowIA.append(IA), rowNS.append(NS)
 rowPV.append(round(PV,2))

 square, IAsquare, NSsquare = 0, 0, 0

 RMSEdf.append(row),IAdf.append(rowIA),NSdf.append(rowNS),PVdf.append(rowPV)
 row, rowIA, rowNS, rowPV = [], [], [], []

RMSEdf = pd.DataFrame(np.column_stack(RMSEdf),columns=headers_new,\
 index=headers_new)
IAdf = pd.DataFrame(np.column_stack(IAdf),columns=headers_new,index=headers_new)
NSdf = pd.DataFrame(np.column_stack(NSdf),columns=headers_new,index=headers_new)
PVdf = pd.DataFrame(np.column_stack(PVdf),columns=headers_new,index=headers_new)

calculate PM and EBC ratio
PM_ratio = []
EBC_ratio = []
for i in mean:
 ratio = i / mean[9]
 PM_ratio.append(ratio)
 ratio = i / mean[16]
 EBC_ratio.append(ratio)

print ratios
#for i,j,k in zip(headers, PM_ratio, EBC_ratio):
print('%s PM ratio: %s and EBC_ratio %s' % (i,j,k))

prepare diurnal data
start = 1211 # 16 oct
end = 1402
Rn_oct = [float(i) for i in Rn_corr]
G_oct = [float(i) for i in HF_2]
Time_oct = Time[start:end]
T1_oct = Tair_1[start:end]
T2_oct = Tair_2[start:end]
U2_oct = W_Speed[start:end]
Rn_oct = Rn_oct[start:end]
G_oct = G_oct[start:end]

48

P_oct = Airpress_corr[start:end]
RH_oct = RH_1[start:end]
diurnal_data = tool.diurnal(T1_oct,T2_oct,U2_oct,P_oct,RH_oct,Rn_oct,G_oct)
lv_oct = diurnal_data[0]
H_oct = diurnal_data[1]
PM_oct = diurnal_data[2]
EBC_oct = [(i-j-k)/l for i,j,k,l in zip(Rn_oct, G_oct, H_oct, lv_oct)]
LE_oct = [i*j for i,j in zip(PM_oct,lv_oct)]

'''
Part VI: Water harvesting
==============================
'''
assign WH period
start = 0
end = 73

calculate water storage with selected evaporation method
WHS_TW = WHS.WH(TW_day[start:end], Rain_day[start:end])
WHS_BC = WHS.WH(BC_day[start:end], Rain_day[start:end])
WHS_MB = WHS.WH(MB_day[start:end], Rain_day[start:end])
WHS_Turc = WHS.WH(Turc_day[start:end], Rain_day[start:end])
WHS_HS = WHS.WH(HS_day[start:end], Rain_day[start:end])
WHS_MK = WHS.WH(MK_day[start:end], Rain_day[start:end])
WHS_PT = WHS.WH(PT_day[start:end], Rain_day[start:end])
WHS_BREB = WHS.WH(BREB_day[start:end], Rain_day[start:end])
WHS_Pen = WHS.WH(Penman_day[start:end], Rain_day[start:end])
WHS_PM = WHS.WH(PM_day[start:end], Rain_day[start:end])
WHS_FAO = WHS.WH(FAO_day[start:end], Rain_day[start:end])
WHS_MS = WHS.WH(MS_day[start:end], Rain_day[start:end])
WHS_BS = WHS.WH(BS_day[start:end], Rain_day[start:end])
WHS_SJ = WHS.WH(SJ_day[start:end], Rain_day[start:end])
WHS_GG = WHS.WH(GG_day[start:end], Rain_day[start:end])
WHS_Mort = WHS.WH(Mort_day[start:end], Rain_day[start:end])
WHS_EBC = WHS.WH(EBC_day[start:end], Rain_day[start:end])
WHS_Time = Time_day[start:end]
WHS_Rain = Rain_day[start:end]

mean_op = np.nanmean(WHS_EBC[0])
mean_sa = np.nanmean(WHS_EBC[2])

calculate statistics for water storage model (RMSE, NSE, IA, P-value)
list_op = [WHS_TW[0], WHS_MK[0], WHS_PT[0], WHS_PM[0], WHS_GG[0], WHS_Mort[0]]
list_sa = [WHS_TW[2], WHS_MK[2], WHS_PT[2], WHS_PM[2], WHS_GG[2], WHS_Mort[2]]
WHS_RMSE_op, WHS_RMSE_sa, WHS_IA_op, WHS_IA_sa = [], [], [], []
WHS_NS_op, WHS_NS_sa, WHS_PC_op, WHS_PV_op = [], [], [], []
WHS_PC_sa, WHS_PV_sa = [], []
sq_op, sq_sa, IAsq_op, IAsq_sa, NSsq_op, NSsq_sa = 0, 0, 0, 0, 0, 0
for i,j in zip(list_op, list_sa):
 mean_meas_op = np.nanmean(i)
 mean_meas_sa = np.nanmean(j)
 for op,sa,ebc_op,ebc_sa in zip(i,j,WHS_EBC[0],WHS_EBC[2]):
 sq_op += pow(op - ebc_op, 2)
 sq_sa += pow(sa - ebc_sa, 2)
 IAsq_op += pow(abs(op - mean_op)+abs(ebc_op - mean_op), 2)
 IAsq_sa += pow(abs(sa - mean_sa)+abs(ebc_sa - mean_sa), 2)
 NSsq_op += pow(op - mean_meas_op, 2)
 NSsq_sa += pow(op - mean_meas_sa, 2)

 MSE_op = sq_op / len(i)
 MSE_sa = sq_sa / len(j)
 RMSE_op = pow(MSE_op, 0.5)
 RMSE_sa = pow(MSE_sa, 0.5)
 IA_op = 1 - (sq_op / IAsq_op)

49

 IA_sa = 1 - (sq_sa / IAsq_sa)
 NS_op = 1 - (sq_op / NSsq_op)
 NS_sa = 1 - (sq_sa / NSsq_sa)
 PC_op, PV_op = pearsonr(WHS_EBC[0], i)
 PC_sa, PV_sa = pearsonr(WHS_EBC[2], j)

 WHS_RMSE_op.append(RMSE_op), WHS_RMSE_sa.append(RMSE_sa)
 WHS_IA_op.append(IA_op), WHS_IA_sa.append(IA_sa)
 WHS_NS_op.append(NS_op), WHS_NS_sa.append(NS_sa)
 WHS_PC_op.append(PC_op), WHS_PV_op.append(PV_op)
 WHS_PC_sa.append(PC_sa), WHS_PV_sa.append(PV_sa)

 sq_op, sq_sa, IAsq_op, IAsq_sa, NSsq_op, NSsq_sa = 0, 0, 0, 0, 0, 0

TW PT MK PM GG Mort
TW_op = (WHS_TW[9] - WHS_EBC[9])# / WHS_EBC[9] * 100
TW_sa = (WHS_TW[10] - WHS_EBC[10])# / WHS_EBC[10] * 100
MK_op = (WHS_MK[9] - WHS_EBC[9])# / WHS_EBC[9] * 100
MK_sa = (WHS_MK[10] - WHS_EBC[10])# / WHS_EBC[10] * 100
PT_op = (WHS_PT[9] - WHS_EBC[9])# / WHS_EBC[9] * 100
PT_sa = (WHS_PT[10] - WHS_EBC[10])# / WHS_EBC[10] * 100
PM_op = (WHS_PM[9] - WHS_EBC[9]) #/ WHS_EBC[9] * 100
PM_sa = (WHS_PM[10] - WHS_EBC[10])# / WHS_EBC[10] * 100
GG_op = (WHS_GG[9] - WHS_EBC[9]) #/ WHS_EBC[9] * 100
GG_sa = (WHS_GG[10] - WHS_EBC[10])# / WHS_EBC[10] * 100
Mort_op = (WHS_Mort[9] - WHS_EBC[9])# / WHS_EBC[9] * 100
Mort_sa = (WHS_Mort[10] - WHS_EBC[10])# / WHS_EBC[10] * 100

#print("TW op: %s\nTW sa:%s\nMK op: %s\nMK sa:%s\nPT op: %s\nPT sa:%s\nPM op:\
%s\nPM sa:%s\n\GG op: %s\nGG sa:%s\nMort op: %s\nMort sa:%s\n"\
% (TW_op, TW_sa, MK_op, MK_sa, PT_op, PT_sa, PM_op, PM_sa, GG_op, GG_sa,\
Mort_op, Mort_sa))

end_time = time.time()
print('Script took ' + str((end_time - start_time)) + " seconds")

'''
Part VII: Plotting data
==============================
'''

''' Remove comment to run plot '''
#soilplot(Rn_corr, Pyrano, Time)
#Eplot.EBCplot(RG, TW_EH, BC_EH, MB_EH, Turc_EH, HS_EH, MK_EH, PT_EH, BREB_EH,\
'TW', 'BC', 'MB', 'Turc', 'HS', 'MK', 'PT', 'BREB', '1')
#Eplot.EBCplot(RG, Pen_EH, PM_EH, FAO_EH, MS_EH, BS_EH, SJ_EH, GG_EH, Mort_EH,\
'Pen', 'PM', 'FAO', 'MS', 'BS', 'SJ', 'GG', 'Mort', '2')
#Eplot.EBCplot(RG, TW_EH, MK_EH, PT_EH, BREB_EH, Pen_EH, PM_EH, GG_EH, Mort_EH,\
'TW', 'MK', 'PT', 'BREB', 'Pen', 'PM', 'GG', 'Mort', '3')
#Eplot.Corr_heatmap(corr, 'corr')
#Eplot.Corr_heatmap(rsq, 'rsq')
#Eplot.Diurnal(Time_oct, Rn_oct, G_oct, LE_oct, H_oct)
#Eplot.EBCvsALLplot(TW_day[:73], Penman_day[:73], FAO_day[:73], PT_day[:73],\
PM_day[:73], MK_day[:73], BS_day[:73], GG_day[:73],\
BC_day[:73], Turc_day[:73], MS_day[:73], JH_day[:73],\
MB_day[:73], HS_day[:73], BREB_day[:73], SJ_day[:73],\
Mort_day[:73], EBC_day[:73], Time_day[:73])
#Eplot.TREGplot(Te, Ta, 'Equilibrium temperature', 'Air temperature')
#Eplot.RnREGplot(Rn_corr_mean[:73], Rn_bin[:73], 'Measured Rn', 'Calculated Rn')
#Eplot.REGplot(Ta, Te, 'Equilibrium temperature', 'Air temperature',\
Rn_corr_mean[:73], Rn_bin[:73], 'Measured Rn', 'Calculated Rn')
#Eplot.rainplot(Rain_day[:73], Tair_1mean[:73], Time_day[:73])
#Eplot.WHSplot(WHS_Rain, WHS_EBC[0], WHS_EBC[2], WHS_EBC[4], WHS_Time)

50

A5 Toolbox script

Toolbox for evaporation model and water storage model ####
Timothy Tiggeloven ####
Evap_toolbox.py ####
Python 3.5.0 ####

Transforms data and calculates meteorological factors ####

'''
Functions in this script are list alphabatically
- diurnal: prepares diurnal data
- equitemp: calculate Te
- meteo: meterological variables library
- nanreplace: replace NaN value with daily mean
- solartonet: calculates net radiation and albedo
- sunrise: calculates sunrise equation
- todaily: transform data measurements to daily mean/max/min
'''

import math
import numpy as np
import pandas as pd

def diurnal(T1, T2, Uz, Pa, RH, Rn, G):
 Cp = 1.013 * pow(10, -3) # specific heat at constant pressure [MJ/kg/C]
 ep = 0.622 # ratio molecular weight vapor/dry air [-]
 ev = 2.501 * pow(10, 6) # enthalpy of vaporization [J/kg]
 h = 0.01 # crop in height [m]
 ka = 0.41 # van Karmen constant [-]
 roua = 1.2 # mean density of air [kg/m^3]
 rs = 70 / 86400 # resistance of the evaporative surface [s/m]
 Rw = 461.5 # gas constant for water vapor [J/K/kg]
 WSh = 3.25 # Wind speed measurements height [m]

 diurnal_data = []

 # calculate dew point temperature
 Td = []
 for i,j in zip(T1, RH):
 H = (np.log10(j) - 2) / 0.4343 + (17.62 * i) / (243.12 + i)
 z = 243.12 * H / (17.62 - H)
 K = i + 273.15
 z = (K / (1 - (K * np.log(j/100)) / (ev/Rw))) - 273.15
 Td.append(z)

 # calculate lv in [MJ/m2]
 lv = []
 for i in T1:
 z = 4185.5 * (751.78 - 0.5655 * (i + 273.15)) / 1000000
 z = (2.501 - (2.361 * pow(10, -3)) * i)
 lv.append(z)
 diurnal_data.append(lv)

 # calculate psychiometric constant
 psy = []
 for i,j in zip(Pa, lv):
 z = (Cp * i / 10) / (ep * j)
 psy.append(z)

 ea, es = [], []
 for i,j in zip(Td,T1):

51

 z = 0.6108 * np.exp((17.27 * i) / (237.3 + i))
 y = 0.6108 * np.exp((17.27 * j) / (237.3 + j))
 ea.append(z)
 es.append(y)

 # adjust wind speed data to reference height of 2 meter
 U2 = []
 for i in Uz:
 z = i * (4.87 / np.log(67.8 * WSh - 5.42))
 U2.append(z)

 # calculate vapour pressure deficit
 VPD = [i - j for i,j in zip(es,ea)]

 # calculate slope of saturation vapour
 slope = []
 for i,j in zip(es, T1):
 z = (4098 * i) / np.power(j + 237.3, 2)
 slope.append(z)

 # calculate aerodynamic resistance with d, zom, zoh and wind speed
 d = 2 / 3 * h
 zom = 0.123 * h
 zoh = 0.0123 * h
 ra = []
 for i in U2:
 z = np.log((2 - d) / zom) * np.log((1.25 - d) / zoh) / (pow(ka, 2) * i)\
 / 86400
 ra.append(z)

 # calculate Penman-Monteith
 ET0 = []
 for i,j,k,l,m,n,o in zip(psy, slope, Rn, G, VPD, ra, lv):
 z = ((j * (k - l) + roua * Cp * m / n) / (j + i * (1 + rs /n))) / o
 ET0.append(z)

 # calculate sensible heat flux [MJ/m2]
 H = []
 for i,j,k in zip (T2, T1, ra):
 z = roua * Cp * ((i - j) / k)
 H.append(z)

 return lv, H, ET0

def equitemp(Rn, lv, penman, psy, Ta, ea):
 sign = 0.01
 steps = 0.001
 lim = 3000
 Te = []
 a = 0
 for i,j,k,l,m,n in zip(Rn, lv, penman, psy, Ta, ea):
 x = m - steps
 diff = 1
 difflow = 1
 Tlow = x
 countlow = 0
 count = 0
 a += 1
 while (diff >= sign):
 es = 0.6108 * np.exp((17.27 * x) / (237.3 + x))
 z = (i / (j * k)) - (1 + (l * (x - m) / (es - n)))
 diff = abs(z)
 y = x
 x -= steps

52

 count += 1

 # save the lowest difference
 if diff < difflow:
 difflow = diff
 Tlow = y
 countlow = count
 # if limit is reached, assign lowest difference
 if count > lim:
 y = Tlow
 diff = 0

 Te.append(y)

 return Te

def meteo(tmax, tmin, RHmax, RHmin, Pa, Uz, tmax2, tmin2, soil1, soil2):
 Cp = 1.013 * pow(10, -3) # specific heat at constant pressure [MJ/kg/C]
 Cpj = 1013 # heat capacity of air [J/kg/C]
 ev = 2.501 * pow(10, 6) # enthalpy of vaporization [J/kg]
 ep = 0.622 # ratio molecular weight vapor/dry air [-]
 Ez = 1208 # elevation of measurements [m]
 h = 0.01 # crop in height [m]
 ka = 0.41 # van Karmen constant [-]
 roua = 1.2 # mean density of air [kg/m^3]
 Rw = 461.5 # gas constant for water vapor [J/K/kg]
 WSh = 3.25 # wind speed measurements height [m]

 # calculate mean T and RH based on max and min T and RH per day
 tmean = [(i + j) / 2 for i,j in zip(tmax, tmin)]
 tmean2 = [(i + j) / 2 for i,j in zip(tmax2, tmin2)]
 RHmean = [(i + j) / 2 for i,j in zip(RHmax, RHmin)]
 smean = [(i + j) / 2 for i,j in zip(soil1, soil2)]
 surfmean = [(i + j) / 2 for i,j in zip(smean, tmean)]

 # calculate dew point temperature
 Td = []
 for i,j in zip(tmean, RHmean):
 H = (np.log10(j) - 2) / 0.4343 + (17.62 * i) / (243.12 + i)
 z = 243.12 * H / (17.62 - H)
 K = i + 273.15
 z = (K / (1 - (K * np.log(j/100)) / (ev/Rw))) - 273.15
 Td.append(z)

 # Calculate latent heat of vaporization
 lv = []
 for i in tmean:
 z = 4185.5 * (751.78 - 0.5655 * (i + 273.15)) / 1000000
 z = 2.501 - (2.361 * pow(10, -3)) * i
 lv.append(z)

 # calculate psychiometric constant
 psy = []
 for i,j in zip(Pa, lv):
 z = (Cp * i / 10) / (ep * j)
 psy.append(z)

 # adjust wind speed data to reference height of 2 meter
 U2 = []
 for i in Uz:
 z = i * (4.87 / np.log(67.8 * WSh - 5.42))
 U2.append(z)

 # calculate mean, max, min and Td saturation vapour

53

 es, emean, emax, emin, esdew = [], [], [], [], []
 for i,j,k,l in zip(tmean, tmax, tmin, Td):
 z = 0.6108 * np.exp((17.27 * i) / (237.3 + i))
 y = 0.6108 * np.exp((17.27 * j) / (237.3 + j))
 x = 0.6108 * np.exp((17.27 * k) / (237.3 + k))
 w = (x + y) / 2
 v = 0.6108 * np.exp((17.27 * l) / (237.3 + l))
 emean.append(z), emax.append(y), emin.append(x), es.append(w)
 esdew.append(v)

 # calculate actual vapour
 ea = []
 for i,j,k,l in zip(RHmax, RHmin, emax, emin):
 z = ((l * i / 100) + (k * j / 100)) / 2
 ea.append(z)

 # calculate actual vapor with dew point temperature
 eadew = []
 for i in Td:
 z = 0.6108 * np.exp((17.27 * i) / (237.3 + i))
 eadew.append(z)
 ea = eadew

 # calculate vapour pressure deficit
 VPD = [i - j for i,j in zip(es,ea)]

 # calculate slope of saturation avpour
 slope = []
 for i,j in zip(emean, tmean):
 z = (4098 * i) / np.power(j + 237.3, 2)
 slope.append(z)

 # calculate aerodynamic resistance with d, zom, zoh and wind speed
 d = 2 / 3 * h
 zom = 0.123 * h
 zoh = 0.0123 * h
 ra = []
 for i in U2:
 z = np.log((2 - d) / zom) * np.log((1.25 - d) / zoh) / (pow(ka, 2) * i)\
 / 86400
 ra.append(z)

 # calculate surface temperature
 y, ts = np.array([-0.05, 1.25, 2.00]), []
 '''
 for i,j,k in zip(smean, tmean2, tmean):
 x = np.array([i,j,k])
 m, b = np.polyfit(np.log(x), y, 1)
 surface = np.exp(-b/m)
 ts.append(surface)
 '''

 # calculate sensible heat flux
 H = []
 for i,j,k in zip (tmean2, tmean, ra):
 z = roua * Cp * ((i - j) / k)
 H.append(z)

 return tmean, lv, psy, U2, es, emean, emax, emin, ea, VPD, slope, RHmean,\
 Td, esdew, ra, H, eadew, tmean2, ts, smean

def nanreplace(datalist, time, stat):
 '''
 Replaces nan values in list with daily mean/max/min

54

 '''
 # calculate and correct for offset of the beginning of the moment of the day
 time = [i - time[0]%1 for i in time]

 # store values in list per day or gaps
 a, b, data, NAN_data = 0, 1, [], []
 for i,j in zip(time, datalist):
 if a == 0:
 a += 1
 NAN_data.append(j)
 else:
 if (i%1 == 0):
 data.append(NAN_data)
 NAN_data = []
 NAN_data.append(j)
 elif b == len(time):
 NAN_data.append(j)
 data.append(NAN_data)
 else:
 NAN_data.append(j)
 b += 1

 # replace nan values with daily average or average between gaps
 a, b, new_data = 0, 0, []
 data = np.array(data)
 for i in data:
 for j in i:
 if (j != j):
 if stat == 'mean':
 z = np.nanmean(data[a])
 elif stat == 'max':
 z = np.nanmax(data[a])
 elif stat == 'min':
 z = np.nanmin(data[a])
 if np.isnan(z) == True:
 z = b
 new_data.append(z)
 else:
 new_data.append(z)
 b = z
 else:
 new_data.append(j)
 a += 1

 return new_data

def solartonet(Rn, Rs, Ra, ea, tmax, tmin):
 Ez = 1208 # elevation of measurements [m]
 sig = 4.903 * pow(10, -9) # Stefan-Boltzmann constant [MJ/K4/m2/day]

 # calculate clear-sky solar radiation
 Rso = []
 for i in Ra:
 z = (0.75 + 2 * pow(10, -5) * Ez) * i
 Rso.append(z)

 # calculate longwave net radiation
 Rnl = []
 for i,j,k,l,m in zip(tmax, tmin, ea, Rs, Rso):
 z = sig * ((pow(i + 273.16, 4) + pow(j + 273.16, 4)) / 2) *\
 (0.34 - 0.14 * pow(k, 0.5)) * (1.35 * (l / m) - 0.35)
 Rnl.append(z)

 # calculate average albedo

55

 Rn_al, Rs_al, Rnl_al = Rn[:73], Rs[:73], Rnl[:73]
 albedo_list = []
 for i,j,k in zip(Rn_al, Rs_al, Rnl_al):
 z = 1 - ((i + k) / j)
 albedo_list.append(z)
 albedo = np.nanmean(albedo_list)

 # calculate net radiation for assigned period
 Rn_bin = []
 for i,j in zip(Rs, Rnl):
 z = (1 - albedo) * i - j
 Rn_bin.append(z)

 Rn_calc = Rn_al
 for i in Rn_bin[73:]:
 Rn_calc.append(i)

 return Rn_calc, albedo_list, Rn_bin

def sunrise(DayNum):
 Gsc = 0.0820 # solar constant [MJ/m2/min]
 lat = -1.1315313 # latitude in degrees [degrees]
 om = lat * math.pi / 180 # latitude in radians

 # calculate photoperiod
 daylight, Re = [], []
 for i in DayNum:
 dr = 1 + 0.033 * math.cos(2 * i * math.pi / 365)
 delta = 0.409 * math.sin(2 * i * math.pi / 365 - 1.39)
 ws = math.acos(-math.tan(om) * math.tan(delta))
 hours = 24 * ws / math.pi
 daylight.append(hours)
 z = (24 * 60 / math.pi) * Gsc * dr * (ws * math.sin(om) *\
 math.sin(delta) + math.cos(om) * math.cos(delta) * math.sin(ws))
 Re.append(z)

 return daylight, Re

def todaily(datalist, time, stat):
 '''
 Transforms data measurements to daily mean/max/min
 '''
 # calculate and correct for offset of the beginning of the moment of the day
 time = [i - time[0]%1 for i in time]

 # find gaps in data and count measurements to be discarded
 a, b, chunklen = 0, 0, []
 for i in time:
 if a == 0:
 a += 1
 b += 1
 else:
 if (i%1 == 0):
 chunklen.append(b)
 b = 1
 else:
 b += 1

 # calculate which sequence in data of days needs te be discarded
 a, delstart, delend = 0, [], []
 for i in chunklen:
 if i == 96:
 a += 1
 else:

56

 z = a * 96
 y = a * 96 + i
 delstart.append(z), delend.append(y)

 # discard the data of days which possess gaps
 delstart.reverse(), delend.reverse()
 for i,j in zip(delstart, delend):
 Datax = np.delete(datalist,(np.r_[i:j]))

 # yield n-sized chunks in list and succeed in list of measurements per day
 chunks = lambda l, n: [l[x: x+n] for x in range(0, len(l), n)]
 Data_chunk = chunks(Datax, 96)

 # calculate mean, minimal and maximum values per day and store in list
 if stat == 'mean':
 Data_day = [float(np.nanmean(i)) for i in Data_chunk]
 elif stat == 'max':
 Data_day = [float(np.nanmax(i)) for i in Data_chunk]
 elif stat == 'min':
 Data_day = [float(np.nanmin(i)) for i in Data_chunk]
 elif stat == 'sum':
 Data_day = [float(np.nansum(i)) for i in Data_chunk]

 return Data_day

57

A6 Evaporation model

Evaporation model ####
Timothy Tiggeloven ####
Evap_functions.py ####
Python 3.5.0 ####

Calculates various evaporation methods ####

'''
The following methods of evaporation are used in this script (alphabetically):
- Blaney-Criddle
- Bowen Ratio Energy Balance
- Brutsaert-Strickler
- FAO Penman-Monteith (daily and 15 min average)
- Granger-Gray
- Hargreaves-Samani
- Jensen-Haise
- Makkink
- Matt-Shuttleworth
- McGuiness-Bordne
- Morton CRAE
- Penman
- Penman-Monteith
- Priestly-Taylor
- Szilagyi-Jozsa
- Thornthwaite (daily and monthly)
- Turc
'''

import libraries
import Evap_toolbox as tool
import math
import numpy as np

declare global variables
Cp = 1.013 * pow(10, -3) # specific heat at constant pressure [MJ/kg/C]
ep = 0.622 # ratio molecular weight vapor/dry air [-]
epmo = 0.92 # land surface emmissivity [-]
Ez = 1208 # elevation of measurements [m]
fz = 28 # constant in Morton [W/m2/mbar]
h = 0.01 # crop in height [m]
ka = 0.41 # van Karmen constant [-]
lat = -1.1315313 # latitude in degrees [degrees]
pe = 0.27 # mean daily percentage of annual daytime hours
roua = 1.2 # mean density of air [kg/m^3]
rs = 70 / 86400 # resistance of the evaporative surface [s/m^-1]
sigma = 5.67 * pow(10, -8) # stefan-boltzmann constant in Morton [W/m2/k4]
sign = 0.001 # significance of the equilibrium Te [-]
step = 0.01 # steps in which to iterate equilibrium Te [-]
WSh = 3.25 # Wind speed measurements height [m]

def BC(meteo):
 # unpack meteorological variables
 tmean = meteo[0]

 # calculate evaporation using Blaney-Criddle
 E = []
 for i in tmean:
 z = pe * (0.46 * i + 8)
 E.append(z)

58

 return E

def BREB(Rn, GF, pen1, meteo1, meteo2, meteo3, soil):
 # unpack meteorological variables
 lv = meteo3[1]
 psy = meteo3[2]
 tmean1, tmean2, tmean3, tsoilmean = meteo1[0], meteo2[0], meteo3[0], soil[0]
 es1, es2, es3 = meteo1[4], meteo2[4], meteo3[4]
 emean1, emean2, emean3 = meteo1[5], meteo2[5], meteo3[5]
 emax1, emax2, emax3 = meteo1[6], meteo2[6], meteo3[6]
 emin1, emin2, emin3 = meteo1[7], meteo2[7], meteo3[7]
 ea1, ea2, ea3 = meteo1[8], meteo2[8], meteo3[8]
 emaxsoil, eminsoil, essoil, easoil = soil[6], soil[7], soil[4], soil[8]

 # calculate equilibrium temperature and vapor with instrument 1
 Te1 = tool.equitemp(Rn, lv, pen1, psy, tmean1, ea1)
 esTe1 = [0.6108 * np.exp((17.27 * i) / (273.3 + i)) for i in Te1]

 # calculate equilibrium temperature and vapor with mean instruments
 pen2 = Penman(Rn, meteo3)
 Te2 = tool.equitemp(Rn, lv, pen2, psy, tmean3, ea3)
 esTe2 = [0.6108 * np.exp((17.27 * i) / (273.3 + i)) for i in Te2]

 # Calculate evaporation using BREB
 BREB_ea, BREB_es, BREB_vpd, BREB_te = [], [], [], []
 for i,j,k,l,m,n,o,p,q,r,s,t,u,v,a,b,c,d,e in zip(psy, tmean1, tmean2, ea1,\
 ea2, Rn, GF, lv, Te1, esTe1, Te2, esTe2, ea3, tmean3, tsoilmean, easoil,\
 essoil, es1, es2):
 '''
 Select breb with 2 instrument arms, equilibrium temperature 1 or 2
 '''
 b_ea = i * (j - k) / (l - m) # actual vapor gradient
 b_es = i * (j - k) / (d - e) # saturation vapor gradient
 b_vpd = i * (j - k) / (d - l) # vpd
 b_te = i * (r - j) / (s - l) # equilibrium gradient
 #bowen = i * (j - k) / (h - l) # upper and lower arm winter 2007
 #bowen = i * (q - k) / (r - m) # equilibrium 1 lower arm
 #bowen = i * (s - v) / (t - u) # equilibrium 2 mean upper and lower
 #bowen = i * (w - j) / (x - l) # soil temperature and lower arm
 #bowen = i * (w - k) / (x - m) # soil temperature and upper arm
 #bowen = i * (w - k) / (y - m) # soil temperature and upper arm
 z = ((n - o) / (1 + b_ea)) / p
 y = ((n - o) / (1 + b_es)) / p
 x = ((n - o) / (1 + b_vpd)) / p
 w = ((n - o) / (1 + b_te)) / p

 BREB_ea.append(z),BREB_es.append(y),BREB_vpd.append(x),BREB_te.append(w)

 return BREB_es, BREB_ea, BREB_vpd, BREB_te

def BS(Rn, meteo, al):
 # unpack meteorological variables
 lv = meteo[1]
 psy = meteo[2]
 U2 = meteo[3]
 VPD = meteo[9]
 slope = meteo[10]

 # calculate evaporation using Brutsaert-Strickler
 E = []
 for i,j,k,l,m,n in zip(psy, slope, Rn, U2, VPD, lv):
 Ea = (1.313 + 1.381 * l) * m
 z = (2 * al - 1) * (j / (j + i)) * (k / n) - (i / (j + i)) * Ea

59

 E.append(z)

 return E

def FAO_daily(Rn, GF, meteo):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]
 psy = meteo[2]
 U2 = meteo[3]
 es = meteo[4]
 emean = meteo[5]
 emax = meteo[6]
 emin = meteo[7]
 ea = meteo[8]
 VPD = meteo[9]
 slope = meteo[10]

 # calculate evapotranspiration using FAO Penman-Monteith
 ET = []
 for i,j,k,l,m,n,o in zip(slope, Rn, GF, VPD, tmean, U2, psy):
 z = (0.408 * i * (j - k) + o *\
 (900 / (m + 273)) * n * l) / (i + o * (1 + 0.34 * n))
 ET.append(z)

 return ET

def FAO_15min(Uz, Temp, RH, Rn, GF, Pa):
 # calculate latent heat of vaporization
 lv = []
 for i in Temp:
 z = 4185.5 * (751.78 - 0.5655 * (i + 273.15)) / 1000000
 lv.append(z)

 # calculate psychiometric constant
 psy = []
 for i,j in zip(Pa, lv):
 z = (Cp * i / 10) / (ep * j)
 psy.append(z)

 # adjust wind speed data to reference height of 2 meter
 U2 = []
 for i in Uz:
 z = i * (4.87 / np.log(67.8 * WSh - 5.42))
 U2.append(z)

 # calculate saturation vapour
 es = []
 for i in Temp:
 z = 0.6108 * np.exp((17.27 * i) / (273.3 + i))
 es.append(z)

 # calculate actual vapour
 ea = [i / 100 * j for i,j in zip(RH, es)]

 # calculate vapour pressure deficit
 VPD = [i - j for i,j in zip(es,ea)]

 # calculate slope of saturation avpour
 slope = []
 for i,j in zip(es, Temp):
 z = (4098 * i) / np.power(j + 273.3, 2)
 slope.append(z)

60

 # calculate evapotranspiration using FAO Penman-Monteith
 ET = []
 for i,j,k,l,m,n,o in zip(slope, Rn, GF, VPD, Temp, U2, psy):
 z = (0.408 * i * (j - k) + o * (900 / (m + 273)) * n * l)\
 / (i + o * (1 + 0.34 * n))
 ET.append(z)

 return ET

def GG(Rn, G, meteo):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]
 psy = meteo[2]
 U2 = meteo[3]
 VPD = meteo[9]
 slope = meteo[10]

 # calculate evaporation using Granger-Gray
 E = []
 for i,j,k,l,m,n,o in zip(psy, slope, Rn, G, U2, lv, VPD):
 Ea = (1.313 + 1.381 * m) * o
 Dp = Ea / (Ea + (k - l))
 Gg = 1 / (0.793 + 0.2 * np.exp(4.902 * Dp)) + 0.006 * Dp
 z = (j * Gg * ((k - l) / n) + i * Gg * Ea) / (j * Gg + i)
 E.append(z)

 return E

def HS(Rs, meteo):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]

 # calculate evaporation using Hargreaves-Samani
 E = []
 for i,j,k in zip(tmean, Rs, lv):
 z = 0.0135 * j * (i + 17.8) / k
 E.append(z)

 return E

def JH(Rs, meteo):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]

 # calculate evaporation using Jensen-Haise
 E = []
 for i,j,k in zip(tmean, lv, Rs):
 z = 0.025 / j * (k * (i + 3))
 E.append(z)

 return E

def MK(Rs, meteo):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]
 psy = meteo[2]
 emean = meteo[5]
 slope = meteo[10]

 # calculate evaporation using Makkink

61

 E = []
 for i,j,k,l in zip(psy, slope, Rs, lv):
 z = 0.65 * (j / (j + i)) * (k / l)
 #z = 0.61 * (j / (j + i)) * (k / l) - 0.12
 E.append(z)

 return E

def MS(Rn, meteo):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]
 psy = meteo[2]
 U2 = meteo[3]
 VPD = meteo[9]
 slope = meteo[10]

 # calculate resistance at reference height of 50m
 rc50 = 1 / pow(0.41, 2) * np.log((50 - 0.67 * h) / (0.123 * h)) *\
 np.log((50 - 0.67 * h) / (0.0123 * h)) * (np.log((2 - 0.08)\
 / 0.0148) / np.log((50 - 0.08) / 0.0148)) / 86400

 # calculate vapour pressure deficit at reference height of 50m
 VPD50 = []
 for i,j,k,l,m in zip(slope, psy, U2, VPD, Rn):
 # calculate climatological resistance
 rclim = 86400 * ((roua * Cp * l) / (i * m))
 z = ((302 * (i + j) + 70 * j * k) / (208 * (i + j) + 70 * j * k)) +\
 ((1 / rclim) * (((302 * (i + j) + 70 * j * k) / (208 * (i + j) +\
 70 * j * k)) * (208 / k) - (302 / k)))
 VPD50.append(z)

 # calculate evapotranspiration using Matt-Shuttleworth
 ET = []
 for i,j,k,l,m,n,o in zip(psy, slope, Rn, U2, VPD, VPD50, lv):
 z = (1 / o) *((j * k + (roua * Cp * l * m / rc50) *\
 n) / (j + i * (1 + rs * l / rc50)))
 ET.append(z)

 return ET

def MB(Re, meteo):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]

 # calculate evaporation using McGuiness-Bordne
 E = []
 for i,j,k in zip(tmean, lv, Re):
 z = 1 / (68 * j) * (k * (i + 5))
 E.append(z)

 return E

def Morton(Rn, meteo, penman):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]
 psy = meteo[2]
 U2 = meteo[3]
 es = meteo[4]
 emean = meteo[5]
 emax = meteo[6]

62

 emin = meteo[7]
 ea = meteo[8]
 VPD = meteo[9]
 slope = meteo[10]
 esdew = meteo[13]

 # calculate equilibrium temperature and saturation vapor at equilibrium
 Te = tool.equitemp(Rn, lv, penman, psy, tmean, ea)
 esTe = []
 for i in Te:
 z = 6.108 * np.exp((17.27 * i) / (273.3 + i))
 esTe.append(z)

 # transform units
 Rn = [i / 0.0864 for i in Rn]
 lv = [i / 0.0864 for i in lv]
 slope = [i * 10 for i in slope]
 esdew = [i * 10 for i in esdew]
 es = [i * 10 for i in es]
 psy = [i * 10 for i in psy]

 # calculate evapotranspiration using Morton CRAE
 ET = []
 for i,j,k,l,m,n,o,p,q,r in zip(lv, Rn, psy, Te, tmean, slope, es, esdew, esTe, ea):
 psp = 1 / pow((288 - 0.0065 * Ez) / 288, 5.256)
 stab = 0.28 * (1 + p / o) + j * n / (k / 10 * 0.66 * (1 / psp)\
 * pow(psp, 0.5) * fz * (o - p))
 fv = pow(psp, 0.5) * fz / stab
 z = (1 / i) * (j - (k * fv + 4 * epmo * sigma * pow(l + 273, 3))\
 * (l - m))
 ET.append(z)

 return ET

def Penman(Rn, meteo):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]
 psy = meteo[2]
 U2 = meteo[3]
 VPD = meteo[9]
 slope = meteo[10]

 # calculate evaporation using Penman
 E = []
 for i,j,k,l,m,n in zip(psy, slope, Rn, U2, VPD, lv):
 Ea = (1.313 + 1.381 * l) * m
 z = (j / (j + i)) * (k / n) + (i / (j + i)) * Ea
 E.append(z)

 return E

def PM(Rn, GF, meteo):
 # unpack meteorological variables
 lv = meteo[1]
 psy = meteo[2]
 U2 = meteo[3]
 VPD = meteo[9]
 slope = meteo[10]
 ra = meteo[14]

 # calculate evapotranspiration using Penman-Monteith
 ET = []
 for i,j,k,l,m,n,o in zip(psy, slope, Rn, GF, VPD, ra, lv):

63

 z = (1 / o) * ((j * (k - l) + roua * Cp * m / n) / (j + i * (1 + rs /n)))
 ET.append(z)

 return ET

def PT(Rn, GF, meteo, al):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]
 psy = meteo[2]
 emean = meteo[5]
 slope = meteo[10]

 # calculate evaporation using Priesley-Taylor
 E = []
 for i,j,k,l,m in zip(slope, psy, Rn, GF, lv):
 #z = al * ((i / (i + j)) * (k / m) - (l / m))
 z = al * ((i / (i + j)) * (k - l) / m)
 E.append(z)

 return E

def SJ(Rn, GF, Pa, Uz, meteo, penman, al):
 # unpack meteorological variables
 tmean = meteo[0]
 lv = meteo[1]
 psy = meteo[2]
 U2 = meteo[3]
 emax = meteo[6]
 emin = meteo[7]
 ea = meteo[8]
 VPD = meteo[9]
 slope = meteo[10]
 RHmean = meteo[11]

 # calculate equilibrium temperatur and Priestly-Taylor equilibrium
 Te = tool.equitemp(Rn, lv, penman, psy, tmean, ea)
 meteo_Te = tool.meteo(Te, Te, RHmean, RHmean, Pa, Uz, Te, Te, Te, Te)
 PTe = PT(Rn, GF, meteo_Te, al)

 # calculate evaporation using Szilagyi-Jozsa
 E = []
 for i,j in zip(PTe, penman):
 z = (2 * i - j)
 E.append(z)

 return E

def TW_monthly(T, DayNum, DayNumMonth, MonthNum, YearNum):
 # calculate photoperiod
 daylight, omega = [], lat * math.pi / 180
 for i in DayNum:
 delta = 0.409 * math.sin(2 * i * math.pi / 365 - 1.39)
 ws = math.acos(-math.tan(omega) * math.tan(delta))
 hours = 24 * ws / math.pi
 daylight.append(hours)

 # average temperature and photoperiod data per month
 Tmonth, Tchunk, Lmonth, Lchunk = [], [], [], []
 month, Mchunk, year, Ychunk = [], [], [], []
 a, b = 0, 0
 for i,j,k,l,m in zip(T, daylight, MonthNum, YearNum, DayNumMonth):
 if a == 0:
 Tchunk.append(i),Lchunk.append(j),Mchunk.append(k),Ychunk.append(l)

64

 elif (len(T) - 1) == a:
 Tchunk.append(i),Lchunk.append(j),Mchunk.append(k),Ychunk.append(l)
 z, y = np.nanmean(Tchunk), np.nanmean(Lchunk)
 w, x = np.nanmean(Mchunk), np.nanmean(Ychunk)
 Tmonth.append(z), Lmonth.append(y), month.append(w), year.append(x)
 Tchunk, Lchunk, Mchunk, Ychunk = [], [], [], []
 elif (b - m) > 0:
 z, y = np.nanmean(Tchunk), np.nanmean(Lchunk)
 w, x = np.nanmean(Mchunk), np.nanmean(Ychunk)
 Tmonth.append(z), Lmonth.append(y), month.append(w), year.append(x)
 Tchunk, Lchunk, Mchunk, Ychunk = [], [], [], []
 Tchunk.append(i),Lchunk.append(j),Mchunk.append(k),Ychunk.append(l)
 else:
 Tchunk.append(i),Lchunk.append(j),Mchunk.append(k),Ychunk.append(l)
 a += 1
 b = m

 # assign number of days in a month for the specific months in data
 daysmonth = []
 days_per_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 for i,j in zip(month, year):
 z = days_per_month[int(i) - 1]
 if i == 2 and (j % 4 == 0 and j % 100 != 0 or j % 400 == 0):
 z = 29
 daysmonth.append(z)

 # calculate heat index
 Heat = []
 for i in Tmonth:
 z = pow((0.2 * i), 1.514)
 Heat.append(z)
 ########## alter if working with data period longer than one year ##########
 HI = sum(Heat) * 12 / len(Heat)

 # calculate function depended on heat index
 alpha = (6.75 * pow(10, -7)) * pow(HI, 3) - (7.71 * pow(10, -5)) *\
 pow(HI, 2) + (1.7912 * pow(10, -2)) * HI + 0.49239

 # calculate evaporation using Thornthwaite
 E = []
 for i,j,k in zip(Tmonth, Lmonth, daysmonth):
 if i > 26:
 z = -415.85 + 32.24 * i - pow((0.43 * i), 2)
 else:
 z = 16 * (j / 12) * (k / 30) * pow((10 * i / HI), alpha)
 E.append(z)

 return E

def TW_daily(T, DayNum, DayNumMonth, MonthNum, YearNum):
 # calculate photoperiod
 daylight, omega = [], lat * math.pi / 180
 for i in DayNum:
 delta = 0.409 * math.sin(2 * i * math.pi / 365 - 1.39)
 ws = math.acos(-math.tan(omega) * math.tan(delta))
 hours = 24 * ws / math.pi
 daylight.append(hours)

 # average temperature and photoperiod data per month
 Tmonth, Tchunk = [], []
 a, b = 0, 0
 for i,j in zip(T, DayNumMonth):
 if a == 0:
 Tchunk.append(i)

65

 elif (len(T) - 1) == a:
 Tchunk.append(i)
 z = np.nanmean(Tchunk)
 Tmonth.append(z)
 Tchunk = []
 elif (b - j) > 0:
 z = np.nanmean(Tchunk)
 Tmonth.append(z)
 Tchunk = []
 Tchunk.append(i)
 else:
 Tchunk.append(i)
 a += 1
 b = j

 # assign number of days in a month for the specific months in data
 daysmonth = []
 days_per_month = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31]
 for i,j in zip(MonthNum, YearNum):
 z = days_per_month[int(i) - 1]
 if i == 2 and (j % 4 == 0 and j % 100 != 0 or j % 400 == 0):
 z = 29
 daysmonth.append(z)

 # calculate heat index
 Heat = []
 for i in Tmonth:
 z = pow((0.2 * i), 1.514)
 Heat.append(z)
 HI = sum(Heat) * 12 / len(Heat)

 # calculate function depended on heat index
 alpha = (6.75 * pow(10, -7)) * pow(HI, 3) - (7.71 * pow(10, -5)) *\
 pow(HI, 2) + (1.7912 * pow(10, -2)) * HI + 0.49239

 # calculate evaporation using Thornthwaite
 E = []
 for i,j,k in zip(T, daylight, daysmonth):
 if i > 26:
 z = (j / (12 * k)) * (-415.85 + 32.24 * i - pow((0.43 * i), 2))
 else:
 z = 16 * (j / (12 * k)) * pow((10 * i / HI), alpha)
 E.append(z)

 return E

def Turc(Rs, meteo):
 # unpack meteorological variables
 tmean = meteo[0]
 RHmean = meteo[11]

 # calculate evaporation using Turc
 E = []
 for i,j,k in zip(tmean, RHmean, Rs):
 z = 0.0133 * (23.88 * k + 50) * (i / (i + 15)) + (1 + ((50 - j) / 70))
 E.append(z)

 return E

66

A7 Water storage model

Water storage model ####
Timothy Tiggeloven ####
Evap_WHS.py ####
Python 3.5.0 ####

Analyses different methods of evaporation for water storage ####

def WH(evap, prec):

 # Declaration of variables describing the WHS
 cap_op = 50 # capacity of open pond [m3]
 cap_sa = 1098 # capacity of sand dam [m3]
 catchment_op = 300 # catchment size of open pond [m2]
 catchment_sa = 5200000000 # catchment size of sand dam [m2]
 demand = 85.86 # demand of water per week per person [L]
 depth_op = 2 # depth of open pond [m]
 depth_sa = 3 # mean depth of sand dam [m]
 HH = 5.8 # mean persons per household in Ethiopia
 inlet_op = cap_op/depth_op # inlet of open pond [m2]
 inlet_sa = cap_sa/depth_sa # inlet of sand dam [m2]
 num_op = 10 # number of households that use open pond
 num_sa = 1100 # number of people that use sand dam
 ROC = 0.58 # run-off coefficient
 sand_evap = 0.9 # depth until which evaporation occurs [m]
 storage_op = cap_op # set initial storage of open pond [m3]
 storage_sa = cap_sa # set initial storage of sand dam [m3]
 threshold = 0.01 # minimum rainfall before run-off occurs [m3]

 # calculate usage of WHS in m3
 usage_op = (HH * num_op) * (demand / 7) / 1000
 usage_sa = (num_sa) * (demand / 7) / 1000

 # capacity where evaporation does not occur in sand dam
 cap_sand_evap = inlet_sa * (depth_sa - sand_evap)

 total_op, total_sa = 0, 0
 E_list_op, E_list_sa, sand_lim = [], [], []
 store_list_op, store_list_sa, usage_list_op, usage_list_sa = [], [], [], []
 # calculate storage and usage of WHS
 for i,j in zip(evap, prec):
 E = i / 1000
 pr = j / 1000

 # channel precipitation
 storage_op += inlet_op * pr
 storage_sa += inlet_sa * pr

 # run-off
 if pr > threshold:
 storage_op += catchment_op * pr * ROC
 storage_sa += catchment_sa * pr * ROC

 # evaporation open pond
 E_op = E * inlet_op
 storage_op -= E_op
 total_op += E_op

 # evaporation sand dam
 E_sa = 0

67

 if storage_sa > cap_sand_evap:
 diff = storage_sa - cap_sand_evap
 if diff < E:
 E_sa = diff * inlet_sa
 storage_sa -= E_sa
 total_sa += E_sa
 else:
 E_sa = E * inlet_sa
 storage_sa -= E_sa
 total_sa += E_sa

 # check capacity, depletion and usage for open pond
 if storage_op > cap_op:
 storage_op = cap_op
 harvest_op = usage_op
 elif storage_op < 0:
 storage_op, harvest_op = 0, 0
 elif storage_op < usage_op:
 harvest_op = storage_op
 storage_op = 0
 else:
 storage_op -= usage_op
 harvest_op = usage_op

 # check capacity, depletion and usage for sand dam
 if storage_sa > cap_sa:
 storage_sa = cap_sa
 harvest_sa = usage_sa
 elif storage_sa < 0:
 storage_sa, harvest_sa = 0, 0
 elif storage_sa < usage_sa:
 harvest_sa = storage_sa
 storage_sa = 0
 else:
 storage_sa -= usage_sa
 harvest_sa = usage_sa

 store_list_op.append(storage_op), usage_list_op.append(harvest_op)
 store_list_sa.append(storage_sa), usage_list_sa.append(harvest_sa)
 E_list_op.append(E_op), E_list_sa.append(E_sa)
 sand_lim.append(cap_sand_evap)

 # calculate total percentage evaporative fracture of WHS
 op_WHS = total_op / cap_op
 sa_WHS = total_sa / cap_sa

 return store_list_op, usage_list_op, store_list_sa, usage_list_sa,\
 sand_lim, total_op, total_sa, E_list_op, E_list_sa, op_WHS, sa_WHS

68

A8 Pyplot script

Evaporation pyplots ####
Timothy Tiggeloven ####
Evap_plots.py ####
Python 3.5.0 ####

Plots data for the evaporation model and water storage model ####

read modules
import csv
import datetime
import math
import matplotlib.dates as dt
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns

curdir = os.getcwd()

def Diurnal(t, Rn, G, lv, H):
 ax=plt.gca()
 xfmt = dt.DateFormatter('%H')
 ax.xaxis.set_major_formatter(xfmt)
 plt.plot_date(t, Rn,'-', label='Net radiation')
 plt.plot_date(t, G,'-', label='Soil heat')
 plt.plot_date(t, lv,'-', label='Latent heat')
 plt.plot_date(t, H,'-', label='Sensible heat')
 plt.xlabel('Time', fontsize=18)
 plt.ylabel('Energy [MJ/m^2]', fontsize=18)
 plt.legend(fontsize=18, loc='upper left')

 plt.xticks(fontsize=18)
 plt.tick_params(axis='both', labelsize=18)

 plt.savefig(curdir+"//Diurnal_plot.png", bbox_inches='tight', dpi=300)
 plt.show()

def Corr_heatmap(corr, name):
 # Generate a mask for the upper triangle
 mask = np.zeros_like(corr, dtype=np.bool)
 mask[np.triu_indices_from(mask)] = True

 # Set up the matplotlib figure
 fig, ax = plt.subplots(figsize=(11, 9))

 # Generate a custom diverging colormap
 cmap = sns.diverging_palette(220, 20, sep=50, n=1, as_cmap=True)

 # Draw the heatmap with the mask and correct aspect ratio
 sns.set(font_scale=3)
 g = sns.heatmap(corr, mask=mask, cmap=cmap, vmax=1, vmin=0, square=True,
 linewidths=.5, cbar_kws={"shrink": .5}, ax=ax)

 g.set_xticklabels(g.get_xticklabels(), rotation = 270, fontsize = 23)
 g.set_yticklabels(g.get_yticklabels(), rotation = 0, fontsize = 23)

 fig.savefig(curdir+"//Heatmap_%s.png" % name, bbox_inches='tight', dpi=300)
 plt.show()

69

 #xticklabels=2, yticklabels=2,

def TREGplot(T1, T2, n1, n2):
 v1, v2 = np.array(T1), np.array(T2)
 m1, b1 = np.polyfit(v1, v2, 1)
 eq1 = 'y = ' + str(round(m1,4)) + 'x' ' + ' + str(round(b1,4))
 corr1 = np.corrcoef(v1, v2)[0,1]
 Rsq1 = 'R^2 = ' + str(round(pow(corr1,2),2))

 fig = plt.figure()
 ax1 = fig.add_subplot(111)
 ax1.plot(T1, T2, '.')
 ax1.plot(v1, m1*v1+b1, '-')
 ax1.plot([18, 25], [18, 25], ls="--", c=".3")
 ax1.set_ylim(19,25)
 ax1.set_xlim(19,25)
 ax1.text(19.5, 24.5, eq1)
 ax1.text(19.5, 24.2, Rsq1)
 ax1.set_xlabel('%s [$ºC$]' % n1)
 ax1.set_ylabel('%s [$ºC$]' % n2)

 fig.savefig(curdir+"//Te_reg.png", bbox_inches='tight', dpi=300)
 plt.show()

def RnREGplot(T1, T2, n1, n2):
 v1, v2 = np.array(T1), np.array(T2)
 m1, b1 = np.polyfit(v1, v2, 1)
 eq1 = 'y = ' + str(round(m1,4)) + 'x' ' + ' + str(round(b1,4))
 corr1 = np.corrcoef(v1, v2)[0,1]
 Rsq1 = 'R^2 = ' + str(round(pow(corr1,2),2))

 fig = plt.figure()
 ax1 = fig.add_subplot(111)
 ax1.plot(T1, T2, '.')
 ax1.plot(v1, m1*v1+b1, '-')
 ax1.plot([0, 14], [0, 14], ls="--", c=".3")
 ax1.set_ylim(4,14)
 ax1.set_xlim(4,14)
 ax1.text(4.3, 13.5, eq1)
 ax1.text(4.3, 13, Rsq1)
 ax1.set_xlabel('%s [MJ/m^2]' % n1,)
 ax1.set_ylabel('%s [MJ/m^2]' % n2)

 fig.savefig(curdir+"//Rn_reg.png", bbox_inches='tight', dpi=300)
 plt.show()

def REGplot(T1, T2, n1, n2, R1, R2, n3, n4):
 v1, v2 = np.array(T1), np.array(T2)
 m1, b1 = np.polyfit(v1, v2, 1)
 eq1 = 'y = ' + str(round(m1,4)) + 'x' ' + ' + str(round(b1,4))
 corr1 = np.corrcoef(v1, v2)[0,1]
 Rsq1 = 'R^2 = ' + str(round(pow(corr1,2),2))

 v3, v4 = np.array(R1), np.array(R2)
 m2, b2 = np.polyfit(v3, v4, 1)
 eq2 = 'y = ' + str(round(m2,4)) + 'x' ' + ' + str(round(b2,4))
 corr2 = np.corrcoef(v3, v4)[0,1]
 Rsq2 = 'R^2 = ' + str(round(pow(corr2,2),2))

 fig = plt.figure()
 ax1 = fig.add_subplot(121)
 ax1.plot(T1, T2, '.')
 ax1.plot(v1, m1*v1+b1, '-')
 ax1.plot([18, 25], [18, 25], ls="--", c=".3")

70

 ax1.set_ylim(19,25)
 ax1.set_xlim(19,25)
 ax1.text(19.5, 24.5, eq1, fontsize=18)
 ax1.text(19.5, 24.2, Rsq1, fontsize=18)
 ax1.set_xlabel('%s [ºC]' % n1, fontsize=18)
 ax1.set_ylabel('%s [ºC]' % n2, fontsize=18)
 ax1.tick_params(axis='both', labelsize=18)

 ax2 = fig.add_subplot(122)
 ax2.plot(R1, R2, '.')
 ax2.plot(v3, m2*v3+b2, '-')
 ax2.plot([0, 14], [0, 14], ls="--", c=".3")
 ax2.set_ylim(4,14)
 ax2.set_xlim(4,14)
 ax2.text(4.3, 13.5, eq2, fontsize=18)
 ax2.text(4.3, 13, Rsq2, fontsize=18)
 ax2.set_xlabel('%s [MJ/m^2]' % n3, fontsize=18)
 ax2.set_ylabel('%s [MJ/m^2]' % n4, fontsize=18)
 ax2.tick_params(axis='both', labelsize=18)

 fig.savefig(curdir+"//reg.png", bbox_inches='tight', dpi=300)
 plt.show()

def EBCplot(RGe, EH1, EH2, EH3, EH4, EH5, EH6, EH7, EH8, n1, n2, n3, n4,\
 n5, n6, n7, n8, num):
 x = np.array(RGe)
 y1, y2, y3, y4 = np.array(EH1), np.array(EH2), np.array(EH3), np.array(EH4)
 y5, y6, y7, y8 = np.array(EH5), np.array(EH6), np.array(EH7), np.array(EH8)
 m1, b1 = np.polyfit(x, y1, 1)
 m2, b2 = np.polyfit(x, y2, 1)
 m3, b3 = np.polyfit(x, y3, 1)
 m4, b4 = np.polyfit(x, y4, 1)
 m5, b5 = np.polyfit(x, y5, 1)
 m6, b6 = np.polyfit(x, y6, 1)
 m7, b7 = np.polyfit(x, y7, 1)
 m8, b8 = np.polyfit(x, y8, 1)
 eq1 = 'y = ' + str(round(m1,2)) + 'x' ' + ' + str(round(b1,2))
 eq2 = 'y = ' + str(round(m2,2)) + 'x' ' + ' + str(round(b2,2))
 eq3 = 'y = ' + str(round(m3,2)) + 'x' ' + ' + str(round(b3,2))
 eq4 = 'y = ' + str(round(m4,2)) + 'x' ' + ' + str(round(b4,2))
 eq5 = 'y = ' + str(round(m5,2)) + 'x' ' + ' + str(round(b5,2))
 eq6 = 'y = ' + str(round(m6,2)) + 'x' ' + ' + str(round(b6,2))
 eq7 = 'y = ' + str(round(m7,2)) + 'x' ' + ' + str(round(b7,2))
 eq8 = 'y = ' + str(round(m8,2)) + 'x' ' + ' + str(round(b8,2))
 corr1 = np.corrcoef(x, y1)[0,1]
 corr2 = np.corrcoef(x, y2)[0,1]
 corr3 = np.corrcoef(x, y3)[0,1]
 corr4 = np.corrcoef(x, y4)[0,1]
 corr5 = np.corrcoef(x, y5)[0,1]
 corr6 = np.corrcoef(x, y6)[0,1]
 corr7 = np.corrcoef(x, y7)[0,1]
 corr8 = np.corrcoef(x, y8)[0,1]
 Rsq1 = 'R^2 = ' + str(round(pow(corr1,2),2))
 Rsq2 = 'R^2 = ' + str(round(pow(corr2,2),2))
 Rsq3 = 'R^2 = ' + str(round(pow(corr3,2),2))
 Rsq4 = 'R^2 = ' + str(round(pow(corr4,2),2))
 Rsq5 = 'R^2 = ' + str(round(pow(corr5,2),2))
 Rsq6 = 'R^2 = ' + str(round(pow(corr6,2),2))
 Rsq7 = 'R^2 = ' + str(round(pow(corr7,2),2))
 Rsq8 = 'R^2 = ' + str(round(pow(corr8,2),2))

 fig = plt.figure()
 ax1 = fig.add_subplot(241)
 ax1.plot(RGe, EH1, '.')

71

 ax1.plot(x, m1*x+b1, '-')
 ax1.plot([3, 18], [3, 18], ls="--", c=".3")
 ax1.set_ylim(3,18)
 ax1.set_xlim(3,18)
 ax1.text(3.1, 17.1, eq1, fontsize=18)
 ax1.text(3.1, 15.9, Rsq1, fontsize=18)
 ax1.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18)
 ax1.set_ylabel('%s + H $[MJ/m^2]$' % n1, fontsize=18)
 ax1.tick_params(axis='both', labelsize=18)

 ax2 = fig.add_subplot(242)
 ax2.plot(RGe, EH2, '.')
 ax2.plot(x, m2*x+b2, '-')
 ax2.plot([3, 18], [3, 18], ls="--", c=".3")
 ax2.set_ylim(3,18)
 ax2.set_xlim(3,18)
 ax2.text(3.1, 17.1, eq2, fontsize=18)
 ax2.text(3.1, 15.9, Rsq2, fontsize=18)
 ax2.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18)
 ax2.set_ylabel('%s + H $[MJ/m^2]$' % n2, fontsize=18)
 ax2.tick_params(axis='both', labelsize=18)

 ax3 = fig.add_subplot(243)
 ax3.plot(RGe, EH3, '.')
 ax3.plot(x, m3*x+b3, '-')
 ax3.plot([3, 18], [3, 18], ls="--", c=".3")
 ax3.set_ylim(3,18)
 ax3.set_xlim(3,18)
 ax3.text(3.1, 17.1, eq3, fontsize=18)
 ax3.text(3.1, 15.9, Rsq3, fontsize=18)
 ax3.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18)
 ax3.set_ylabel('%s + H $[MJ/m^2]$' % n3, fontsize=18)
 ax3.tick_params(axis='both', labelsize=18)

 ax4 = fig.add_subplot(244)
 ax4.plot(RGe, EH4, '.')
 ax4.plot(x, m4*x+b4, '-')
 ax4.plot([3, 18], [3, 18], ls="--", c=".3")
 ax4.set_ylim(3,18)
 ax4.set_xlim(3,18)
 ax4.text(3.1, 17.1, eq4, fontsize=18)
 ax4.text(3.1, 15.9, Rsq4, fontsize=18)
 ax4.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18)
 ax4.set_ylabel('%s + H $[MJ/m^2]$' % n4, fontsize=18)
 ax4.tick_params(axis='both', labelsize=18)

 ax5 = fig.add_subplot(245)
 ax5.plot(RGe, EH5, '.')
 ax5.plot(x, m5*x+b5, '-')
 ax5.plot([3, 18], [3, 18], ls="--", c=".3")
 ax5.set_ylim(3,18)
 ax5.set_xlim(3,18)
 ax5.text(3.1, 17.1, eq5, fontsize=18)
 ax5.text(3.1, 15.9, Rsq5, fontsize=18)
 ax5.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18)
 ax5.set_ylabel('%s + H $[MJ/m^2]$' % n5, fontsize=18)
 ax5.tick_params(axis='both', labelsize=18)

 ax6 = fig.add_subplot(246)
 ax6.plot(RGe, EH6, '.')
 ax6.plot(x, m6*x+b6, '-')
 ax6.plot([3, 18], [3, 18], ls="--", c=".3")
 ax6.set_ylim(3,18)
 ax6.set_xlim(3,18)

72

 ax6.text(3.1, 17.1, eq6, fontsize=18)
 ax6.text(3.1, 15.9, Rsq6, fontsize=18)
 ax6.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18)
 ax6.set_ylabel('%s + H $[MJ/m^2]$' % n6, fontsize=18)
 ax6.tick_params(axis='both', labelsize=18)

 ax7 = fig.add_subplot(247)
 ax7.plot(RGe, EH7, '.')
 ax7.plot(x, m7*x+b7, '-')
 ax7.plot([3, 18], [3, 18], ls="--", c=".3")
 ax7.set_ylim(3,18)
 ax7.set_xlim(3,18)
 ax7.text(3.1, 17.1, eq7, fontsize=18)
 ax7.text(3.1, 15.9, Rsq7, fontsize=18)
 ax7.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18)
 ax7.set_ylabel('%s + H $[MJ/m^2]$' % n7, fontsize=18)
 ax7.tick_params(axis='both', labelsize=18)

 ax8 = fig.add_subplot(248)
 ax8.plot(RGe, EH8, '.')
 ax8.plot(x, m8*x+b8, '-')
 ax8.plot([3, 18], [3, 18], ls="--", c=".3")
 ax8.set_ylim(3,18)
 ax8.set_xlim(3,18)
 ax8.text(3.1, 17.1, eq8, fontsize=18)
 ax8.text(3.1, 15.9, Rsq8, fontsize=18)
 ax8.set_xlabel('Rn - G $[MJ/m^2]$', fontsize=18)
 ax8.set_ylabel('%s + H $[MJ/m^2]$' % n8, fontsize=18)
 ax8.tick_params(axis='both', labelsize=18)

 fig.savefig(curdir+"//EB_reg%s.png" % num, bbox_inches='tight', dpi=300)
 plt.show()

def EBCvsALLplot(TW, Penman, FAOday, PT, PM, MK, BS, GG, BC, Turc, MS, JH, MB,\
 HS, BREB, SJ, Mort, EBC, t):
 fig = plt.figure()
 ax1 = fig.add_subplot(411)
 ax1.plot_date(t, EBC, 'black', label='EBC')
 ax1.plot_date(t, TW, 'b-', label='Thornthwaite')
 ax1.plot_date(t, BC, 'r-', label='Blaney-Criddle')
 ax1.plot_date(t, MB, 'g-', label='McGuiness-Bordne')
 ax1.set_xticklabels([], visible=False)
 ax1.set_ylim(0,7)
 ax1.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=18)
 ax1.tick_params(axis='both', labelsize=18)

 ax2 = fig.add_subplot(412)
 ax2.plot_date(t, EBC, 'black', label='EBC')
 ax2.plot_date(t, Turc, 'b-', label='Turc')
 ax2.plot_date(t, HS, 'r-', label='Hargreaves-Samani')
 ax2.plot_date(t, MK, 'g-', label='Makkink')
 ax2.plot_date(t, PT, 'y-', label='Priesley-Taylor')
 ax2.plot_date(t, BREB, 'c-', label='BREB')
 ax2.set_xticklabels([], visible=False)
 ax2.set_ylim(0,7)
 ax2.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=18)
 ax2.tick_params(axis='both', labelsize=18)

 ax3 = fig.add_subplot(413)
 ax3.plot_date(t, EBC, 'black', label='EBC')
 ax3.plot_date(t, Penman, 'b-', label='Penman')
 ax3.plot_date(t, PM, 'r-', label='Penman-Monteith')
 ax3.plot_date(t, FAOday, 'g-', label='FAO PM')
 ax3.plot_date(t, MS, 'y-', label='Matt-Shuttleworth')

73

 ax3.set_xticklabels([], visible=False)
 ax3.set_ylim(0,7)
 ax3.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=18)
 ax3.tick_params(axis='both', labelsize=18)

 ax4 = fig.add_subplot(414)
 ax4.plot_date(t, EBC, 'black', label='EBC')
 ax4.plot_date(t, BS, 'b-', label='Brutsaert-Strickler')
 ax4.plot_date(t, SJ, 'r-', label='Szilagyi-Jozsa')
 ax4.plot_date(t, GG, 'g-', label='Granger-Gray')
 ax4.plot_date(t, Mort, 'y-', label='Morton CRAE')
 ax4.set_ylim(0,7)
 ax4.legend(loc='center left', bbox_to_anchor=(1, 0.5), fontsize=18)
 ax4.tick_params(axis='both', labelsize=18)
 plt.xticks(fontsize=18)

 fig.text(0.04, 0.5, 'Evaporation [mm/day]', va='center',\
 rotation='vertical', fontsize=20)
 fig.savefig(curdir+"//EBC_ALL.png", bbox_inches='tight', dpi=300)
 plt.show()

def rainplot(prec, temp, t):
 width = 0.8
 x = np.asarray(t)
 fig = plt.figure()
 ax1 = fig.add_subplot(111)
 plt.gca().xaxis.set_major_formatter(dt.DateFormatter('%d-%m-%y'))
 plt.gca().xaxis.set_major_locator(dt.DayLocator())
 plt.xticks(np.arange(min(x), max(x)+1, 5.0))
 plt.xticks(rotation=45, fontsize=18)

 ax1.bar(x, prec, width, label='Precipitation')
 ax1.set_ylabel('Rainfall [mm]', fontsize=18)
 legend = ax1.legend(loc='upper left', shadow=True)
 handles, labels = ax1.get_legend_handles_labels()
 ax1.legend(handles, labels, loc='upper left', fontsize=18)
 plt.tick_params(axis='both', labelsize=18)

 ax2 = ax1.twinx()
 ax2.step(x, temp, 'r-', where='post', label='Temperature')
 ax2.set_ylabel('Temperature [ºC]', fontsize=18)
 ax2.set_ylim(15, 27)
 legend = ax2.legend(loc='upper right', shadow=True)
 handles, labels = ax2.get_legend_handles_labels()
 ax2.legend(handles, labels, loc='upper right', fontsize=18)
 plt.tick_params(axis='both', labelsize=18)

 fig.set_size_inches(18, 10)
 fig.savefig(curdir+"//Rainplot.png", bbox_inches='tight', dpi=300)
 plt.show()

def WHSplot(prec, st1, st2, lim, t):
 width = 0.8
 x = np.asarray(t)
 fig = plt.figure()
 ax1 = fig.add_subplot(121)
 plt.gca().xaxis.set_major_formatter(dt.DateFormatter('%d-%m-%y'))
 plt.gca().xaxis.set_major_locator(dt.DayLocator())
 plt.xticks(np.arange(min(x), max(x)+1, 5.0))
 plt.xticks(rotation=45)

 ax1.bar(x, prec, width, label='Precipitation')
 ax1.set_ylabel('Rainfall [mm]', fontsize=18)
 legend = ax1.legend(loc='upper left', shadow=True)

74

 handles, labels = ax1.get_legend_handles_labels()
 ax1.legend(handles, labels, loc='upper left', fontsize=18)
 ax1.tick_params(axis='both', labelsize=18)

 ax2 = ax1.twinx()
 ax2.plot(x, st1, 'y', label='Water stored')
 ax2.set_ylabel('Storage [m^3]', fontsize=18)
 ax2.set_ylim(20, 50)
 legend = ax2.legend(loc='upper left', shadow=True)
 handles, labels = ax2.get_legend_handles_labels()
 ax2.legend(handles, labels, loc='upper right', fontsize=18)
 ax2.tick_params(axis='both', labelsize=18)

 ax3 = fig.add_subplot(122)
 plt.gca().xaxis.set_major_formatter(dt.DateFormatter('%d-%m-%y'))
 plt.gca().xaxis.set_major_locator(dt.DayLocator())
 plt.xticks(np.arange(min(x), max(x)+1, 5.0))
 plt.xticks(rotation=45, fontsize=18)

 ax3.bar(x, prec, width, label='Precipitation')
 ax3.set_ylabel('Rainfall [mm]', fontsize=18)
 legend = ax3.legend(loc='upper left', shadow=True)
 handles, labels = ax3.get_legend_handles_labels()
 ax3.legend(handles, labels, loc='upper left', fontsize=18)
 ax3.tick_params(axis='both', labelsize=18)

 ax4 = ax3.twinx()
 ax4.plot(x, st2, 'y-', label='Water stored')
 ax4.plot(x, lim, 'r-')
 ax4.set_ylabel('Storage [m^3]', fontsize=18)
 legend = ax4.legend(loc='upper left', shadow=True)
 handles, labels = ax4.get_legend_handles_labels()
 ax4.legend(handles, labels, loc='upper right', fontsize=18)
 ax4.tick_params(axis='both', labelsize=18)

 fig.savefig(curdir+"//WHS_op.png", bbox_inches='tight', dpi=300)
 plt.show()

75

References
Aerts, J., Lasage, R., Beets, W., de Moel, H., Mutiso, G., Mutiso, S., & de Vries, A.
 (2007). Robustness of sand storage dams under climate change. Vadose
 Zone Journal, 6(3), 572-580.
Alexandris, S., Stricevic, R., & Petkovic, S. (2008). Comparative analysis of reference
 evapotranspiration from the surface of rainfed grass in central Serbia,
 calculated by six empirical methods against the Penman-Monteith formula.
 European Water, 21(22), 17-28.
Allen, R. G., & Pruitt, W. O. (1986). Rational use of the FAO Blaney-Criddle formula.
 Journal of Irrigation and Drainage Engineering, 112(2), 139-155.
Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). FAO Irrigation and
 drainage paper No. 56. Rome: Food and Agriculture Organization of the
 United Nations, 56, 97-156.
Benesty, J., Chen, J., Huang, Y., & Cohen, I. (2009). Pearson correlation coefficient.
 In Noise reduction in speech processing (pp. 1-4). Springer Berlin Heidelberg.
Bouchet, R. J. (1963). Evapotranspiration réelle et potentielle, signification
 climatique. IAHS Publ, 62, 134-142.
De Bruin, H. A. R. (1981). The determination of (reference crop) evapotranspiration
 from routine weather data. In Proceedings of Technical Meeting (Vol. 38, pp.
 25-37).
Brutsaert, W., & Stricker, H. (1979). An advection‐aridity approach to estimate actual
 regional evapotranspiration. Water resources research, 15(2), 443-450.
Brutsaert, W. (2013). Evaporation into the atmosphere: theory, history and
 applications (Vol. 1). Springer Science & Business Media.
Cammeraat, E. L. (2004). Scale dependent thresholds in hydrological and erosion
 response of a semi-arid catchment in southeast Spain. Agriculture,
 Ecosystems & Environment, 104(2), 317-332.
Condie, S. A., & Webster, I. T. (1997). The influence of wind stress, temperature, and
 humidity gradients on evaporation from reservoirs. Water Resources
 Research, 33(12), 2813-2822.
Craig, I. P. (2006). Comparison of precise water depth measurements on agricultural
 storages with open water evaporation estimates. Agricultural Water
 Management, 85(1), 193-200.
DeMeo, G. A., Laczniak, R. J., Boyd, R. A., Smith, J. L., & Nylund, W. E. (2003).
 Estimated ground-water discharge by evapotranspiration from Death Valley,
 California, 1997-2001 (No. 2003-4254).
Dolman, A. J., Miralles, D. G., & Jeu, R. A. (2014). Fifty years since Monteith's 1965
 seminal paper: the emergence of global ecohydrology. Ecohydrology, 7(3),
 897-902.
Doorenbos, J., Pruitt, W. O., & Aboukhaled, A. (1992). Crop water requirements.
Drexler, J. Z., Snyder, R. L., Spano, D., Paw, U., & Tha, K. (2004). A review of
 models and micrometeorological methods used to estimate wetland
 evapotranspiration. Hydrological Processes, 18(11), 2071-2101.
Duan, Z., & Bastiaanssen, W. G. M. (2017). Evaluation of three energy balance-
 based evaporation models for estimating monthly evaporation for five lakes

76

 using derived heat storage changes from a hysteresis model. Environmental
 Research Letters, 12(2), 024005.
EMG, U. (2011). Global drylands: a UN system-wide response. United Nations
 Environment Management Group, 131.
Ertsen, M., & Hut, R. (2009). Two waterfalls do not hear each other. Sand-storage
 dams, science and sustainable development in Kenya. Physics and
 Chemistry of the Earth, Parts A/B/C, 34(1), 14-22.
Van de Giesen, N. C., Stomph, T. J., & De Ridder, N. (2000). Scale effects of
 Hortonian overland flow and rainfall–runoff dynamics in a West African catena
 landscape. Hydrological Processes, 14(1), 165-175.
Granger, R. J., & Gray, D. M. (1989). Evaporation from natural nonsaturated
 surfaces. Journal of Hydrology, 111(1-4), 21-29.
Guo, D., Westra, S., & Maier, H. R. (2016). An R package for modelling actual,
 potential and reference evapotranspiration. Environmental Modelling &
 Software, 78, 216-224.
Hargreaves, G. H., & Samani, Z. A. (1985). Reference crop evapotranspiration from
 temperature. Appl. Eng. Agric, 1(2), 96-99.
Hayashi, I. (1996). Five years experiment on vegetation recovery of drought
 deciduous woodland in Kitui, Kenya. Journal of Arid Environments, 34(3),
 351-361.
Huntington, J. L., Szilagyi, J., Tyler, S. W., & Pohll, G. M. (2011). Evaluating the
 complementary relationship for estimating evapotranspiration from arid
 shrublands. Water Resources Research, 47(5).
Hut, R., Ertsen, M., Joeman, N., Vergeer, N., Winsemius, H., & van de Giesen, N.
 (2008). Effects of sand storage dams on groundwater levels with
 examples from Kenya. Physics and Chemistry of the Earth, Parts A/B/C,
 33(1), 56-66.
Inman-Bamber, N. G., & McGlinchey, M. G. (2003). Crop coefficients and water-use
 estimates for sugarcane based on long-term Bowen ratio energy balance
 measurements. Field Crops Research, 83(2), 125-138.
IPCC (2012) IPCC special report on managing the risks of extreme events and
 disasters to advance climate change adaptation. http://ipcc-wg2gov/SREX/  
Iqbal, M. (2012). An introduction to solar radiation. Elsevier.
Jarraud, M. (2008). Guide to meteorological instruments and methods of observation
 (WMO-No. 8). World Meteorological Organisation: Geneva, Switzerland.
Jensen, M. E., Burman, R. D., & Allen, R. G. (1990). Evapotranspiration and irrigation
 water requirements. ASCE.
Jiménez Cisneros, B.E., T. Oki, N.W. Arnell, G. Benito, J.G. Cogley, P. Döll, T. Jiang,
 and S.S. Mwakalila, 2014: Freshwater resources. In: Climate Change 2014:
 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects.
 Contribution of Working Group II to the Fifth Assessment Report of the
 Intergovernmental Panel on Climate Change [Field, C.B., V.R. Barros, D.J.
 Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi, Y.O.
 Estrada, R.C. Genova, B. Girma, E.S. Kissel, A.N. Levy, S. MacCracken, P.R.
 Mastrandrea, and L.L. White (eds.)]. Cambridge University Press, Cambridge,
 United Kingdom and New York, NY, USA, pp. 229-269.

77

Kenya National Bureau of Statistics (KNBS) and Society for International
 Development (SID). (2013). Exploring Kenya’s Inequality: Pulling Apart or
 Pooling Together. Nairobi: KNBS and SID.
Kenya National Bureau of Statistics (KNBS). (2015). Statistical Abstract 2015.
 Nairobi: KNBS.
Lasage, R., Aerts, J. C. J. H., Mutiso, G. C., & De Vries, A. (2008). Potential for
 community based adaptation to droughts: Sand dams in Kitui, Kenya. Physics
 and Chemistry of the Earth, Parts A/B/C, 33(1), 67-73.
Lasage, R., Aerts, J. C. J. H., Verburg, P. H., & Sileshi, A. S. (2015). The role of
 small scale sand dams in securing water supply under climate change in
 Ethiopia. Mitigation and adaptation strategies for global change, 20(2), 317.
Lasage, R., & Verburg, P. H. (2015). Evaluation of small scale water harvesting
 techniques for semi-arid environments. Journal of Arid Environments, 118,
 48-57.
Lawrence, M. G. (2005). The relationship between relative humidity and the dewpoint
 temperature in moist air: A simple conversion and applications. Bulletin of the
 American Meteorological Society, 86(2), 225-233.
Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of “goodness‐of‐fit”
 measures in hydrologic and hydroclimatic model validation. Water resources
 research, 35(1), 233-241.
Li, X. Y., Xie, Z. K., & Yan, X. K. (2004). Runoff characteristics of artificial catchment
 materials for rainwater harvesting in the semiarid regions of China.
 Agricultural Water Management, 65(3), 211-224.
Liu, S., Lu, L., Mao, D., & Jia, L. (2007). Evaluating parameterizations of
 aerodynamic resistance to heat transfer using field measurements. Hydrology
 and earth system sciences, 11(2), 769-783.
Love, D., van der Zaag, P., Uhlenbrook, S., & Owen, R. J. S. (2011). A water balance
 modelling approach to optimising the use of water resources in ephemeral
 sand rivers. River research and applications, 27(7), 908-925.
Makkink, G. F. (1957). Testing the Penman formula by means of lysimeters. J. Inst.
 Water Eng, 11(3), 277-288.
McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., & McVicar, T. R. (2013).
 Estimating actual, potential, reference crop and pan evaporation using
 standard meteorological data: a pragmatic synthesis. Hydrology and Earth
 System Sciences, 17(4), 1331.
Monteith, J. L., Szeicz, G., & Waggoner, P. E. (1965). The measurement and control
 of stomatal resistance in the field. Journal of Applied Ecology, 345-355.
Monteith, J. L. (1994, September). Fifty years of potential evaporation. In Proc. Conf.
 Trinity College (pp. 29-45).
Monteith, J., & Unsworth, M. (2007). Principles of environmental physics. Academic
 Press.
Morton, F. I. (1983). Operational estimates of areal evapotranspiration and their
 significance to the science and practice of hydrology. Journal of Hydrology,
 66(1-4), 1-76.

78

Munywoki, J. M., Kitema, M. I., Munguti, J. M., & Mutiso, S. (2004). Kitui Sand Dams:
 Construction and Operation [Project Documentation]. Kitui, Kenya: SASOL
 Foundation.
Nagler, P. L., Scott, R. L., Westenburg, C., Cleverly, J. R., Glenn, E. P., & Huete, A.
 R. (2005). Evapotranspiration on western US rivers estimated using the
 Enhanced Vegetation Index from MODIS and data from eddy covariance and
 Bowen ratio flux towers. Remote sensing of environment, 97(3), 337-351.
Nash, J.E. & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models.
 Part I—a discussion of principles. Journal of Hydrology, 10 (1970), 282–290.
Nash, J. E. (1989). Potential evaporation and “the complementary relationship”.
 Journal of Hydrology, 111(1-4), 1-7.
Ngigi, S. N. (2003). What is the limit of up-scaling rainwater harvesting in a river
 basin?. Physics and Chemistry of the Earth, Parts A/B/C, 28(20), 943-956.
Nicholson, S. E. (2014). A detailed look at the recent drought situation in the Greater
 Horn of Africa. Journal of Arid Environments, 103, 71-79.
Nie, D., Kanemasu, E. T., Fritschen, L. J., Weaver, H. L., Smith, E. A., Verma, S. B.,
 Field, R. T., Kustas, W. & Stewart, J. B. (1992). An intercomparison of surface
 energy flux measurement systems used during FIFE 1987. Journal of
 Geophysical Research: Atmospheres, 97(D17), 18715-18724.
Olufayo, O. A., Otieno, F. A., & Ochieng, G. M. (2009). Run-off storage in sand
 reservoirs as an alternative source of water supply for rural and semi-arid
 areas of South Africa. In WCSET conference proceedings. August (pp. 24-
 26).
Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., &
 Loumagne, C. (2005). Which potential evapotranspiration input for a lumped
 rainfall–runoff model?: Part 2—Towards a simple and efficient potential
 evapotranspiration model for rainfall–runoff modelling. Journal of hydrology,
 303(1), 290-306.
Pauw, W. P., Mutiso, S., Mutiso, G., Manzi, H. K., Lasage, R., & Aerts, J. C. (2008).
 An assessment of the social and economic effects of the Kitui sand Dams
 community based adaptation to climate change. Nairobi: SASOL and Institute
 for Environmental Studies.
Penman, H. L. (1948, April). Natural evaporation from open water, bare soil and
 grass. In Proceedings of the Royal Society of London A: Mathematical,
 Physical and Engineering Sciences (Vol. 193, No. 1032, pp. 120-145). The
 Royal Society.
Penman, H.L. (1956), Evaporation: An introductory survey. Netherlands Journal of
 Agricultural Science, vol. 4, 9-29.
Pereira, A. R., & Pruitt, W. O. (2004). Adaptation of the Thornthwaite scheme for
 estimating daily reference evapotranspiration. Agricultural Water
 Management, 66(3), 251-257.
Priestley, C. H. B., & Taylor, R. J. (1972). On the assessment of surface heat flux
 and evaporation using large-scale parameters. Monthly weather review,
 100(2), 81-92.
Quilis, R. O., Hoogmoed, M., Ertsen, M., Foppen, J. W., Hut, R., & de Vries, A.
 (2009). Measuring and modeling hydrological processes of sand-storage

79

 dams on different spatial scales. Physics and Chemistry of the Earth, Parts
 A/B/C, 34(4), 289-298.
Rosenberry, D. O., Winter, T. C., Buso, D. C., & Likens, G. E. (2007). Comparison of
 15 evaporation methods applied to a small mountain lake in the northeastern
 USA. Journal of Hydrology, 340(3), 149-166.
Schaefli, B. and Gupta, H. V. (2007), Do Nash values have value?. Hydrol. Process.,
 21: 2075–2080.
Shuttleworth, W. J. (2006). Towards one-step estimation of crop water requirements.
 Transactions of the ASABE, 49(4), 925-935.
Shuttleworth, W. J., & Wallace, J. S. (2009). Calculating the water requirements of
 irrigated crops in Australia using the Matt-Shuttleworth approach.
 Transactions of the ASABE, 52(6), 1895-1906.
Szilagyi, J. (2007). On the inherent asymmetric nature of the complementary
 relationship of evaporation. Geophysical Research Letters, 34(2).
Szilagyi, J., & Jozsa, J. (2008). New findings about the complementary relationship-
 based evaporation estimation methods. Journal of Hydrology, 354(1), 171-
 186.
Tanaka, S., Sugimura, T., & Mishima, S. (2000). Monitoring of vegetation extent
 around Kitui pilot forest (afforestation test site) in Kenya with rainfall by
 satellite data. Advances in Space Research, 26(7), 1039-1042.
Tanny, J., Cohen, S., Assouline, S., Lange, F., Grava, A., Berger, D., ... & Parlange,
 M. B. (2008). Evaporation from a small water reservoir: Direct measurements
 and estimates. Journal of Hydrology, 351(1), 218-229.
Thornthwaite, C. W. (1948). An approach toward a rational classification of climate.
 Geographical review, 38(1), 55-94.
Tiggeloven, T. (2015). Modelling the effectiveness of household scale water
 harvesting structures in semi arid areas. Unpublished.
Todd, R. W., Evett, S. R., & Howell, T. A. (2000). The Bowen ratio-energy balance
 method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-
 arid, advective environment. Agricultural and Forest Meteorology, 103(4),
 335-348.
Turc, L. (1961). Estimation of irrigation water requirements, potential
 evapotranspiration: a simple climatic formula evolved up to date. Ann Agron,
 12(1), 13-49.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D., Prusevich, A.,
 Green, P., ... & Davies, P. M. (2010). Global threats to human water security
 and river biodiversity. Nature, 467(7315), 555-561.
Willmott, C. J. (1982). Some comments on the evaluation of model performance.
 Bulletin of the American Meteorological Society, 63(11), 1309-1313.
Winter, T. C., Rosenberry, D. O., & Sturrock, A. M. (1995). Evaluation of 11
 equations for determining evaporation for a small lake in the north central
 United States. Water Resources Research, 31(4), 983-993.
Yamanaka, T., Kaihotsu, I., Oyunbaatar, D., & Ganbold, T. (2007). Summertime soil
 hydrological cycle and surface energy balance on the Mongolian steppe.
 Journal of arid environments, 69(1), 65-79.

