

ROADS FOR WATER SECURITY WATER FOR ROADS SAFETY Road Water Management: Design Considerations

Why design considerations for RWM?

Observations:

Assessment for the need for design consideration for RWM is done in all intervention areas:

- Ethiopia
 - Tigray & Amhara RSs
 - Dire Dawa Admin.,
 - Oromia, SNNPR, Gambela RSs
- Kenya
- Uganda
- Bangladesh

Why design considerations for RWM?

To make use of the huge opportunity

- As compared to many countries that have lower rainfall amount, the rainfall in Ethiopia ranges between less than 200 mm in some parts of the northern and south-eastern lowlands to 2700 mms in south-western highlands.
- The physiographic set upundulating, hilly and mountainous geomorphology (Contributes to high flow reaching the arable land).
- Better highland-lowland hydrologic link

Opportunity....

- The road sector in Ethiopia is one the fast growing
- Exponentially growing road water harvesting potential/opportunity
- During the past three decades road density/1000 sq.km (including community roads) has risen from 24 km to more than140km
- The19,017 kms road ~24 years ago, with an annual average increment of 18.8%, has now reached 105,000 km (ERA, 2009, Ibid 2015).
- The increase is also happening in water stressed areas
- Planed to build more than 100,000 kilometers of roads in GTPII

Missed opportunity

- Most roads are built on water divides, parallel to major rivers but across small rivers and streams
 - Modify watersheds but added benefit if R4W is implemented

Missed opportunity...

- Create substantial opportunities for productive use of water
 - * Improved soil fertility
 - Supplementary irrigation
 - Roadside plantation
 - Water for livestock, human (when treated)
 - Improved ecosystem
- More accessible and inhabited to make R4W easy for implementation
 - High demonstration effect

Modify watersheds

Harm to downstream users

- Flood and erosion hazard
- Reduced recharge and moisture availability
- Blockage on upstream side

To minimize the damages to roads

- If not well handled water is No. 1 enemy of roads the most appropriate way to do this is making the enemy a friend
- In Ethiopia water typically is the cause of 35% of the damage on paved roads and close to 80% on unpaved roads. Problematic drainage is the most common factor in construction delays

To minimize ...

- Reduced maintenance burden among others by uphill watershed protection,
- Reduced damage from uncontrolled runoff on unpaved roads (a major issue) and reduced risk of gully damage

To minimize ...

- Reduced risk of road induced flooding and water logging
 Reduce erosion and
 - sedimentation

For better consideration of the hydro-ecosystems

the rift valley lakes environment

- Reduced flow to the reservoirs
- Damage to the roads, particularly in such high rainfall years

the rift valley lakes environment...

 Vulnerable geological formation and rift structures are the main controlling factors

the rift valley lakes environment....

Floods on the upstream side of roads

To tackle roads impacts on wetlands & excess rainfall situation

Impacts also depend on hydrological responses – impoundments may or may not create wetlands

Existing approaches and guidelines

- Each sector (road, water, agriculture) has its own guidelines and manuals to do its mandated task.
- The road sector guidelines never consider the beneficial use of water.
- The agricultural sector consider roads as aggravating land degradation
- The modification to the hydrology by roads is a concern for the water sector

The need for a common guideline

To bridge the gap between the key actors by:

 Linking the various sectoral guidelines and manuals by adding the missing links to address RWM

The Guideline Preparation Process & Status

□ MoU signed with ERA

- follow-up and support
- endorse the GL and recruited lead freelance consultants
- Based on initial tentatively agreed contents
 - ToR for the whole process is prepared

Guideline Preparation Task Team (GPTT)

- The preparation of the Guidelines is a team work
- A multidisciplinary task team consisting highly qualified, experienced and professionals is established.
- The **GPTT** is composed of individual consultants drawn from Metameta, Mekele University, ERA Staffs and freelance consultants proposed by ERA.

- Professionally, the team is composed of well experienced-high level professionals including highway engineer, structural engineer, hydrologist, geotechnical engineer, environmentalist and socioeconomist.

International Reference Group/Team (IRG)

- An international reference group consisting **highly qualified professionals** with international experiences and having two to three members will be formed.

- The international team will be responsible to review the Guidelines at its intermediate and final stages.

- It will also create connection with other countries in the AFCAP network; for instance through a regional committee.

What is in the guideline?

Annex - Agreed Table of Contents

ERA Guidelines for Road Water Management

- 1. Introduction
 - · Importance of multi-functional road development to create resilience
 - Characterization of road water harvesting in different types of road catchments and type of settings (lowland, highland/ agriculture, forest, pastoralist areas)
 - · General guidelines for road development
 - · General guidelines for road maintenance
- 2. Current practices of road water management in Ethiopia
- 3. Calculating catchment run-off and direct-road run-off
- 4. Principles of Road Water Management
 - 4.1 What is Road Water Management for Climate Resilience
 - 4.2 Water Harvesting Principles
- 5. Planning of a road project considering water harvesting
 - Site Investigation Stages
 - Route selection for high volume roads
 - Road Location of low volume roads
 - Reusing borrow pits and quarries for water harvesting
- 6. Road Water Management Techniques
 - Water storage systems
 - Erosion Protections and water guiding systems
 - Surface Drains
 - Subsurface Drains
 - Diversion structures

What is in the guideline?....

- 7. Drainage design and road surfaces
 - Water harvesting from drains
 - Sand harvesting from drains
- 8. Design of culverts and associated structures
 - Culvert placement (concentrated or distributed road drainage)
 - Culvert design
 - Culvert size
 - Fish passage from culverts
 - Downstream erosion control
 - Water spreading from culverts
- 9. Road side water harvesting structures
 - Storage ponds (location and dimensions)
 - Infiltration ponds (location and dimensions)
 - Deep trenches (location and dimensions)
 - Soak pits
 - Lining

10. River crossings

- Using fords and low causeways as sand dams
- Using fords and low causeways as river bed stabilizer or flood water spreaders

What is in the guideline?....

11. Developing road side vegetation

- 12. Landscape management around roads
 - Erosion and run-off control
 - Avoiding and preventing landslides
 - Avoiding sand dune formation
- 13. Roads and wetlands and flood management
 - · Roads in low lying flood plains
 - · Contribution of roads to flood control
 - · Roads as embankments and evacuation areas
 - RWM in wetlands
- 14. Geotechnical considerations for water harvesting from roads
 - · Water storage ponds
 - Roadside drainages
 - Culverts and bridges
 - River crossings (fords, etc.)
 - Road embankments for water storage
- 15. Sub-surface drainages from road slopes
 - Types and locations
 - Road side spring capture and protection and seepage management
 - Spring safety
 - Safe access
 - · Dimension upstream or downstream
 - Roads and seepage management

What is in the guideline?

- 16. Generalized Spatial Guide for RWM and Water Harvesting
- 17 Defining access to road water harvesting benefits
 - Access to land and water
 - Gender considerations
- 18 Water quality issues related to RWM
 - a. From bitumen surface
 - b. From urban, industrial and domestic waste
- 19 Health and Environmental issues related to RWM
 - a. Malaria
 - b. Water related diseases
 - c. Environment
- 20 Community and stakeholder engagement in road water harvesting
 - a. Community resource planning
 - b. Coordination with watershed programs
- 21 Legislations & Guidelines Relevant to RWM

(Incorporate indigenous knowledge)

Some highlights

Design consideration at Site Investigation Stages

- As per ERA's Site Investigation Manual 2013 chapter 1 section 1.4, site investigation is required at all stages in the development of a road project.
- □ Consider RWM in all four stages leading up to and including Final Engineering Design. These are;
 - Identification and general planning
 - Pre-feasibility study
 - Feasibility or Preliminary Engineering Design
 - Final Engineering Design

[⊕]6.1. Water storage systems

Water storage systems						
Options	Possible area of application	Possible area of application Design Consideration				
Detention/retenti on basin	 Upper slope catchment area Down slope area 	 Topography Soil types and their infiltration Land use and land cover Catchment area and rainfall intensity Community needs Availability of land for basin development Distance of the basin from road and its effect on the safety of the road 	the location of the basin should be outside of the road reserve			
Micro basin-from soil berm	 Upper slope catchment area Down slope area 	 Topography Soil types and their infiltration Land use and land cover Catchment area and rainfall intensity Seasonal characteristics of stream flow Community needs Availability of land for basin development Distance of the basin from road and its effect on the safety of the road 	 micro basin are generally suitable to construct at locations with low storm water flow the location of the basin should be outside of the road reserve 			

6.2. Erosion Protections and water guiding systems

Erosion protections and water guiding systems					
Options	Possible area of application	Design Consideration	Remarks		
Packed or	 Upper slope catchment area 	 Topography 	It enhances recharging by slowing		
dumped rock	 Down slope area 	 Soil types and their erodiblity 	down the run-off		
riprap	 Rolling to mountainous 	 Availability of construction 	 Serves as streambed erosion 		
	terrain	material source	protection by reducing the scour in		
	•		erodible canal		
Check dams dry	 On side ditches 	 Road/ditch gradient 	It provides proper guide of ditch flow,		
and mortared	-	 Soil types and their erodiblity 	especially in steep gradient road		
		 Catchment area and rainfall 	sections, to water harvesting systems		
inte		intensity	 It helps to minimize sedimentation to 		
		 Community needs 	water harvesting systems and		
		 Availability of construction 	protects erosion		
		material source			

6.3. Surface Drains

Surface Drains					
Options	Possible area of application	Design Consideration	Remarks		
Furrow/intercepting	 Top of mountain 	 Topography 	 Enhance slope stability 		
ditches	 Top of deep cut section 	 Soil types and their erodiblity 	To control the flow of water: flow can		
	 Intercepting ditches at the top 	 Slope stability 	be directed to nearest water		
	and bottom of the slopes	 Cut depth 	harvesting system		
Miter drains/ ditch	 On side ditches/drains: to 	 Length of side drains 	 Commonly practiced in many water 		
out	provide flow relief of the side	 Road/ditch gradient 	scarcity areas of the country to guide		
	drain	 Soil types and their erodiblity 	water from side drains to farm land		
		 Catchment area and rainfall 	and other water harvesting systems		
		intensity			
		 Community needs 			

6.4. Subsurface Drains

Subsurface Drainage Systems					
Options	Possible area of application	Design Consideration	Remarks		
French drain	 Through side drains: especially in water logging area and springs 	 Topography Road/ditch gradient Amount of subsurface water 	 It is rock field trench Collects subsurface water and protects the road subgrade from saturation 		
Slotted or perforated uPVC pipes	 Through side drains: especially in water logging area and springs 	 Topography Road/ditch gradient Amount of subsurface water Diameter of slotted or perforated pipe Use of geotextile filter fabric 	 Rock fill to a certain depth from invert and filled with impermeable back filling Collects subsurface water and protects the road subgrade from saturation 		

Provide interactive spatial guide based on homogenous planning units for BRWM/WH containing the most determinant factors

Generalized Interactive Spatial RWM/WH Planning Guide

Parent Geology		Recommended W			WH Technology and Most Suitable Areas						
Rock Group	Rock Type	Potential Threat for WH	Major derived soil texture type	Technology type (in priority order)	Agro-ec	Agro-ecological zone*			S1	Aridity	Code
					Sub- humid	Semi- arid	Arid	RF Range	Slope range	Index	
		Cryst	alline Basement/M	etamorphic Rocks							
Acid metamorphic rocks – Schist, quartzite, gneiss, migmatite, slate, phyllite, pelitic	 Leaking Structures- faults, joints fractures 	unconsolidated soil layer & regoliths	Sand dams, Check dams, lined ponds, recharge wells, others	~	~	~	<1200mm	0 to 50%			
	rocks		Hard rock surface	Rock surface water harvesting	~	~	~	All range	0 to 50%		
Basic metamorphic rocks	 Schist, slate, phyllite, pelitic rocks, green, schist, gneiss rich in 	 Leaking Structures- faults, joints fractures 	unconsolidated soil layer & regoliths	Sand dams, lined ponds, recharge wells, check dams, others	√	~	~	<1200mm	0 to 50%		
Fe-Mg minerals, marble, amphibolite	Fe–Mg minerals, marble, amphibolite		Hard rock surface	Rock surface water harvesting	✓	✓	~	All range	0 to 50%		
Ultrabasic metamorphic rocks	 Serpentinite, greenstone, 	 Leaking Structures- faults, joints fractures (check for heavy metal concentration, 	Coarse-grained sand/Sandy soils/sandy loam	Sand dams, lined ponds, check dams & others		~	V	<1200mm	0 to 50%		
		objectionable test & odour) - Water logging,	Hard rock surface	Rock surface water harvesting		~	~	All range	0 to 50%		

Planning low volume roads Road location Alternating of slopes Reducing erosion

UNPAVED ROADS

Water bars on unpaved roads to avoid flooding of road

- Make small water bars at unpaved roads at regular distance – this avoids road erosion and helps to harvest water from the roads
 - If the road is steep make these water bars at shorter distance
- Make water bars at angle with roads to guide the water away from the road
 Divert the water to land or grazing area

Avoid flooding of adjacent land

Have adequate water bars, rolling dips and lead-out drains at the right locations

ROAD CROSSING

Using road crossings to store groundwater upstream

- 💞 Road crossing will help to store water. upstream in the river bed which will recharge wells
- 💞 If the river is sandy this can store a good quantity of water

💞 If the river is broad a sand dam without culverts will stabilize the river bed

If the road crossing is connected to the bed rock it will act as full sand dam

🚺 Make sure there is a spillway for high floods

Go for non vented (no culvert) fords Anchoring on bed rock affects water rights

Converted borrow pits and quarries

Converting borrow pits to store water from roadside drains and culverts

Connect culvert to the borrow pit Ensure capacity is adequate Make fence around pond so that no accidents can happen Provide adequate spillway If used for drinking water equip with slow sand filter

Make sure the borrow pit is properly modified so there is no danger

Plan location of borrow pits (downslope of road) Plan size/number of borrow pits (one large or several small ones)

ROAD SIDE PONDS

Water storage ponds to store water from road side drainages and culverts

- Include sediment trap and plant vegetation along water flow
- Lining with clay, geomembrane, or other techniques to avoid excessive seepage
- Proper water lifting integrated with ponds
- Make sure capacity is enough to capture the run-off water from culverts
- If used for drinking water equip with slow sand filter

Do not place too close to road body to avoid road damage

CONSIDER USE OF SCOOPS TO CONSTRUCT

ROAD SIDE INFILTRATION PONDS

Roadside infiltration ponds for groundwater recharge

In areas of high rainfall make the infiltration ponds at angle from the roads Make spill overs between segments of the infiltration pond Remove silt regularly

Avoid infiltration pond too near to the road – may undermine the road and may create road safety problem

INFILTRATION PONDS

Roadside pits for soil moisture increase and prevent flooding of farmland

Annual maintenance and road side vegetation to avoid siltation Install posts as well as provision of roadside plantations

Build a small spillway for excess water

Don't build pits to close to the road

WATER SPREADERS FROM CULVERTS

Water spreaders from culverts for suplemental irrigation

Use water to spread gently away from natural drain to avoid erosion Construct these culvert water spreaders

early on so that no gully will develop Gently guide the water to agricultural

FLOOD WATER SPREADERS

Flood water spreaders from road surface to enhance soil moisture and recharge groundwater

Make in direction of slope Make at regular distance especially when the road is slopy Avoid use in steep slopes

TREE PLANTING

Roadside tree planting for environmental mitigation and economic benefit

 Support local by-laws and planting of economically rewarding trees
 Select appropriate species together with communities and local experts
 Involve roadside communities in planting and maintenance

Avoid tree planting along curves and road stretches with reduced visibility

Lessons learned

- The team has better understanding of the need for 'road water management' in its new form
- Identification of homogenous 'beneficial road water management' units is important to design the GL in accordance to specifics of these units
- The team has fully agreed the 'dissipate water' approach supported by the existing functional GLs by the road sector is not preferred option.
- Want to push further for this guideline to be one of the road sector GLs
- The widely varying hydrogeomorphic and agro-ecological conditions of Ethiopia make the GL easily replicable in other sub-Saharan African countries