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Abstract: In the drylands of Ethiopia, several road water harvesting practices (RWHP) have been
used to supplement rain-fed agriculture. However, factors affecting adoption of RWHP and their
impacts were not studied systematically. Understanding the factors influencing the adoption of
RWHP for sustainable agricultural intensification and climate resilience is critical to promoting such
technologies. This paper investigates the impacts of using rural roads to harvest rainwater runoff and
the factors causing farmers to adopt the practice. Road water harvesting is considered a possible
mechanism for transformative climate change adaptation. By systematically capturing rainfall with
rural road infrastructure, rain-related road damage is reduced, erosion and landscape degradation
due to road development is lessened, and farm incomes increase due to the beneficial use of harvested
water, resulting in an increased climate change resilience. This paper uses a binary probit model and
propensity score matching methods based on a household survey of 159 households and 603 plots.
The results of the probit model show that the education level of the household, family labor, access
to markets, and distance of the farming plot from the farmer’s dwelling are statistically significant
in explaining farmers’ adoption of RWHP in the study area. The casual impact estimation from
the propensity score matching suggests that RWHP has positive and significant impacts on input
uses (farmyard manure and fertilizer), crop yield, and farm income among the sample households.

Keywords: adoption; farmyard manure; fertilizer; income; Northern Ethiopia; road water
harvesting; yield

1. Introduction

Ethiopia’s estimated population of over 100 million makes it the second most populous country
in Africa. Ethiopia is agro-ecologically and ethnically diverse, and predominantly agrarian [1]. Rain-
fed agriculture plays a pivotal role in the national economy, accounting for 36% of the Gross Domestic
Product (GDP), 70% of export earnings, 76% of the livelihood of the country’s workforce, and nearly 80%
of employment in rural areas [2]. However, the agriculture sector in the dryland areas of the country
suffers from drought-induced moisture stress events [3]. Dryland areas in Ethiopia cover three-quarters
of the country’s landmass, and one-third of the population [4]. Hence, changes in the biophysical
environment, such as rainfall fluctuations in dryland areas, easily destabilize the national economy [5,6].

Dryland areas are characterized by high intra- and inter-seasonal rainfall variability [7]. Agriculture
in these areas is considered a risky and challenging undertaking, as rainfall is relatively inadequate with
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high spatial and temporal variability, manifested in prolonged dry spells during the growing season
with the net effects of agricultural yield damage and food insecurity [2,3]. This often results in reduced
life expectancy or migration for the rural poor who depend on rain-fed agriculture [7]. Furthermore,
due to the high risks associated with water availability for plant growth, farmers in semi-arid areas
tend to refrain from using productivity-enhancing inputs. This, together with the fluctuations in
yields, makes it hard for subsistence farmers in semi-arid areas to stay and sustain their livelihoods in
agriculture [8].

Dramatic consequences of climate changes have recently been experienced in eastern African
countries (such as Ethiopia, Somalia, and Kenya), where many parts of the region have serious floods,
followed by drought and then floods again [9]. Inadequate and extreme fluctuations in the amount of
water available in the root-zone is a major constraint to the productivity and profitability of agriculture,
resulting in a poverty trap for smallholder farmers. Evidence shows that one drought occurrence in
a decade can lower a country’s national GDP by 10% and increase poverty by 14% [6].

This negative spiral of insecurity and inability to buffer water resources is a significant problem.
A virtuous cycle of green future farming is needed. Depending on the local context in dryland areas,
this can be achieved through different techniques. Several studies have been conducted on the effect
of rain water harvesting (RWH) in arid and semiarid regions around the world [6,7,10,11]. RWH
is a well-known practice designed to improve water security and agricultural production. RWH
includes different methods for inducing, collecting, storing, and conserving local surface runoff.
Climate change and increases in water demand have renewed interest in the management of RWH
in drylands. Increases in drought frequency and extreme precipitation events emphasize the role
of RWH in improving water security. One part of RWH technique is harvesting runoff water from
roads, which is termed as road water harvesting practices (RWHP). Road water harvesting practices
include diverting runoff (from roadsides, culverts, and bridges) into farmlands using soil or stone
bund water channels, small water storage ponds, terraces, and roadside pits [12]. These water channels
are both advantageous and affordable. However, labor constraints, negative perceptions of road water
harvesting practices, weak development agents contact, low levels of social capital, lack of security of
land rights, low levels of household head education, and development practitioners lack awareness
on such practices or the local context result in the low adoption rate of RWHP in the semi-arid
regions [13,14].

Given the affordability of RWHP and the significant effect of erratic rainfall on crop yields, it
seems that road water harvesting practice would be a good initiative in semi-arid areas [15]. For
semi-arid areas, rain water harvesting in general, and water harvested from roads in particular, could
improve infiltration of water in the soil profile [6], conserve nutrients from runoff [12,16,17], recharge
groundwater potential [12], enhance moisture availability in plant roots, improve crop yields [15,18],
and contribute to income and food security, at least for producers [8,9]. Above all, road water harvesting
is considered a viable strategy for people living in semi-arid areas for countering droughts, mitigating
flooding, and enhancing climate resilient agriculture by promoting use of inputs (such as fertilizer,
compost, and improved seed), crop yields, and income [9]. In this regard, Hagos et al. [19] indicate
that the use of water harvesting has resulted in an increase in per capita income of USD 82 per season
and 24% less poverty among users of RWHP compared to non-users.

This paper aims to evaluate the impacts of RWHP on input uses (such as inorganic fertilizer
and compost), crop yield, and income. In Ethiopia, there is limited evidence of factors affecting
smallholders’ uses of road water harvesting and its impacts on input uses, crop yields, and incomes.
This paper presents an analysis of the determinants of the uses of road water harvesting and its
socioeconomic impacts on subsistence farmers in the semi-arid areas of northern Ethiopia. The paper
evaluates the demographic, socioeconomic, and biophysical factors affecting the use of road water
harvesting and evaluates its impacts on input uses, yields, and income with particular reference to
the Tigrai region of northern Ethiopia. The evidences generated from this paper would help policy
makers in the dryland areas of the world particularly in sub-Saharan African countries to formulate
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and promote appropriate road water harvesting strategies in the future, as the demand for water in
the era of climate change is quite pertinent.

2. Materials and Methods

2.1. The Study Area

Ethiopia is geographically complex country that occupies broad agro-ecological zones that ranges
from the lowest altitude at the Danakil depression at about 126 m below sea level, to up to the highest
peak at 4562 m above sea level at Ras Dashen [20]. The temperature in Ethiopia ranges from 10 degree
Celsius in the central Highlands to 40 degree Celsius in Danakil Depression that is considered the hottest
place in the world. Following the geographical complexity, rainfall also varies (250 millimeters in Gode
city to 2000 millimeters in the Central Highlands). Rainfall variability is the critical failure factor for
food security in most parts of the country.

Tigrai is one among the nine Regional States of Ethiopia (see Figure 1). Tigrai Region is located
in northern Ethiopia and belongs to the African dry land zones often called the Sudano–Sahalian
region [21]. It is lies in northern Ethiopia, extending from 120 to 150 north latitude and 3630′′ to
4130′′ east longitude. The region is bounded to the north by Eritrea, to the west by the Sudan, to
the south by the Amhara region, and to the east by the Afar region. Altitude varies from about
500 meters above sea level (m.a.s.l.) in the northeast to almost 4000 m.a.s.l. in the southwest [22].
The region is divided into six zones, which in turn are divided in to 98 districts. The population size of
the region is estimated around six million, with an annual growth rate of 2.5 percent occupying an
area of just over 80 thousand square kilometers. The average population density of the region is 80
persons/km2, with high concentrations in the Eastern, Southern, and Central Zones where it is 131,
122, and 115 persons/km2, respectively [23]. Agriculture and its allied activities constituted about 55%
of the regional GDP and provided employment for more than 85% of the population. The farming
systems of the region are largely based on traditional technologies and practices. The production
system is characterized by scarcity of arable land, highly fragmented farm plots, and highly variable
and insufficient rainfall [21].

Average annual rainfall in Tigrai is between 552 mm and 767 mm per year. The precipitation
occurs mostly during a short summer (end of June to mid-September) rainy season, often falling
as intense storms that result in serious soil erosion and yield reduction. However, since the 1980s,
many areas of the natural resources have reappeared on hillsides following agreements by local
communities to restrict access by people and grazing animals to these areas [5]. The land use pattern
of the region indicates that out of the total land size of the region about 1.06 million hectares are
suitable for cultivation [22]. The average land holding per household in the region varies from one
location to another; in areas where the population density is very high, the average size of holdings
ranges between 0.5–2.0 hectares, while in sparsely populated areas, like in western low land areas of
the region, it goes up to 4 hectares or more [22].

The major crop production constraints in the region are: Poor agronomic and soil management
practices coupled with the lack of improved farm implements; high moisture stress; recurrent outbreak
and expansion of crop pests, diseases, weeds infestation and rodents, small size of land holding,
shortage of oxen, severe soil erosion, and poor soil fertility [21]. Soil erosion, soil nutrient depletion,
moisture stress, deforestation, and overgrazing are the major environmental problems in the region. In
general, Tigrai contains many of the areas of greatest land degradation concern in Ethiopia's highlands.
Erosion and the resulting land degradation have become serious problems in the region, while the use
of agricultural inputs, such as improved seeds and fertilizer, is at a lower level. Moreover, farmers have
poor access to essential supporting services. As a result, crop yields are very low. Recurrent drought
and low yields have caused the growth rate of food production to lag behind the rate of population
growth [22].
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systematically in Tigrai since 2014 in an attempt to protect rural roads from rainfall damage, reduce 
landscape degradation, and promote water and food security [24]. Depending on several factors 
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water harvesting were implemented: (a) Channeling water from hydraulic systems (bridges, culverts, 
and road side drainages) into a series of deep trenches for enhancing soil moisture and groundwater 
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and groundwater recharge (e.g., Figure 2d), (d) shallow groundwater development upstream of Irish 
bridges and fords, and (e) spring capture in road cuts. 

Figure 1. Location of the study area, Ethiopia.

Several factors make Tigrai suitable for road water harvesting. The first factor is the region’s
rainfall occurrence and distribution. The climate in Tigrai is characterized as semi-arid. Mean annual
precipitation is variable, with erratic and torrential rains mainly (70%) concentrated in the period of
June to early September, with considerable inter-year variability [20]. The inter-year variability of
precipitation has two main consequences: Soil erosion during the rainy season, with Tigrai considered
to be seriously degraded, and water insecurity during the dry season, with severe implications in
terms of yield, income, and food security.

In both paved and unpaved roads, water harvesting practices have been implemented
systematically in Tigrai since 2014 in an attempt to protect rural roads from rainfall damage, reduce
landscape degradation, and promote water and food security [24]. Depending on several factors
(including topography, soil types, rainfall amount, and water demand), different techniques of road
water harvesting were implemented: (a) Channeling water from hydraulic systems (bridges, culverts,
and road side drainages) into a series of deep trenches for enhancing soil moisture and groundwater
recharge (e.g., Figure 2a,b), (b) channeling water from culverts and road sides into farm lands (e.g.,
Figure 2c), (c) use of ponds to harvest water from roads (culverts, bridges) for surface water storage
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and groundwater recharge (e.g., Figure 2d), (d) shallow groundwater development upstream of Irish
bridges and fords, and (e) spring capture in road cuts.Sustainability 2020, 12, x FOR PEER REVIEW 5 of 25 
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soil moisture and productivity (c); and water from culvert is stored in ponds for surface water use 
and groundwater recharge (d). (Photo: Authors). 
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Qihin-Wukro-Freweign-Hawzien-Abreha Weatsbeha-Wukro route in Tigrai. This 64 km road section 
crosses three woredas (districts): Saesie Tsaeda Emba (woreda center is Freweign town), Hawzien 
woreda (woreda center is Hawzien town), and Klite Awlaelo woreda (woreda center is Wukro town), 
where this study has been conducted. This road rout has been selected for this study due to the 
ongoing efforts by the development practitioners in promoting road water harvesting and the 
availability of long-term hydrological monitoring of the interventions in the area. Both paved and 
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Multi-stage sampling procedures were employed in order to obtain representative information. 
First, a list of villages and their road water harvesting status were identified via field visits, and then 
households were randomly selected from the list of each kebele’s (in Ethiopia, kebele is the lowest 
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Figure 2. Examples of the different types of road water harvesting implemented in northern Ethiopia:
Channeling water from roads into series of deep trenches for enhancing soil moisture and recharging
groundwater (a,b); channeling water from roadside into farm lands (with no trenches) for enhancing
soil moisture and productivity (c); and water from culvert is stored in ponds for surface water use and
groundwater recharge (d). (Photo: Authors).

This road water harvesting practice has been part of a larger watershed development campaign
throughout the region. Since the 1980s, soil and water conservation (SWC) and water harvesting
techniques have been widely implemented to tackle land degradation and foster development. SWC
and water harvesting reduce surface runoff and enhance infiltration, sediment deposition, and
vegetation growth [25]. There are many options for joint SWC and road water harvesting initiatives,
such as diverting water from culverts, using springs that are opened up with road construction, or
reusing excavation pits as storage reservoirs. One such initiative was undertaken along the upgraded
Qihin-Wukro-Freweign-Hawzien-Abreha Weatsbeha-Wukro route in Tigrai. This 64 km road section
crosses three woredas (districts): Saesie Tsaeda Emba (woreda center is Freweign town), Hawzien
woreda (woreda center is Hawzien town), and Klite Awlaelo woreda (woreda center is Wukro town),
where this study has been conducted. This road rout has been selected for this study due to the ongoing
efforts by the development practitioners in promoting road water harvesting and the availability of
long-term hydrological monitoring of the interventions in the area. Both paved and unpaved roads
were considered in this study.

2.2. Sampling Procedures and Data

Multi-stage sampling procedures were employed in order to obtain representative information.
First, a list of villages and their road water harvesting status were identified via field visits, and then
households were randomly selected from the list of each kebele’s (in Ethiopia, kebele is the lowest
administrative unit) farmers. Survey data were collected through home visits between March and April
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2018, through which four trained interviewers, under the supervision of the principal researcher, spoke
to 159 farmers of 603 plots. The household-level interviews were conducted during home visits using
semi-structure interview schedule. The major data set for the interview schedule includes household
demographic, socio-economics, land use, use of road water harvesting, yield, input use, income sources,
and farmers’ viewpoints concerning the effects of road water harvesting and the perceived benefits
and losses related to the road water harvesting practices.

2.3. Analytical Procedures

A binary probit regression model was used to analyze factors affecting the use of water harvesting.
Binary choice models assume that individuals are faced with a choice between two alternatives and
that their choice depends on the characteristics of the choices. The Propensity Score Matching (PSM)
technique was used to analyze the impact of participation on household yield, productivity, and
income status. The propensity score is defined as the probability of receiving an intervention given
pre-treatment covariates [26]. Evaluating a program or an intervention is always a problem when there
is no baseline survey and when the subjects receiving the treatment are assigned in a non-random
manner. To reduce bias in the estimation of treatment effects, the technique of matching subjects that
received treatment (use of water harvesting) with those that did not receive treatment (non-users of
water harvesting) based on observable covariates was developed [27].

Matching based on propensity scores is a mechanism developed to control bias in the estimation
of treatment effects (impact) that arise due to confounding factors. Once the propensity scores are
established, the average treatment effects of water harvesting on the water harvesting practices of
adopters households or average treatment effect on treated (ATT)—in this study, the amount of farm
yard manure used, amount fertilizer used, crop yield, and annual crop income status matrixes—are
estimated using different matching algorithms [27] that use different techniques to match the two
comparison groups based on their propensity scores (for details of model definition, see Appendix A).
In this study, all the outcome variables have been estimated at plot level.

The matching algorithms used in this study were Nearest Neighbor Matching (NN), Radius
Matching (RR), Kernel Matching (KK), and Stratification Matching (SS). These algorithms differ in
the way ‘neighbor’ is defined for each treated individual, how the common support is handled, and
how the weights are assigned to these neighbors. Nearest Neighbor, Radius, Kernel Matching, and
Stratification Matching are algorithms used to measure the impacts of development intervention
following their different inherent attributes. For instance, the Stratification method deals with dividing
the range of variation of the propensity score in intervals such that within each interval treated and
control units have on average the same propensity score. The ATT of interest is finally obtained as an
average of the ATT of each block with weights given by the distribution of treated units across blocks.
The Stratification method discards observations in blocks where either treated or control units are
absent, resulting in a dropping number of observations. This observation suggests an alternative way to
match treated and control units, which consists of taking each treated unit and searching for the control
unit with the closest propensity score, i.e., the Nearest Neighbor. Once each treated unit is matched with
a control unit, the difference between the outcome of the treated units and the outcome of the matched
control units is computed. The ATT of interest is then obtained by averaging these differences. While
in the case of the Stratification method, there may be treated units which are discarded because no
control is available in the block, in the case of the Nearest Neighbor method, all treated units find
a match. The Radius Matching and Kernel Matching methods offer a solution to this problem. With
Radius Matching, each treated unit is matched only with the control units whose propensity scores
fall in a predefined neighborhood of the propensity score of the treated unit. If the dimension of
the neighborhood is set to be very small, it is possible that some treated units are not matched because
the neighborhood does not contain control units. With Kernel Matching, all treated are matched
with a weighted average of all controls with weights that are inversely proportional to the distance
between the propensity scores of the treated and controls. It is clear from the above considerations
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that these four methods reach different points on the frontier of the trade-off between quality and
quantity of the matches, and none of them is a priori superior to the others. Hence, the variation in
the number of observations during matching by the four algorithms is normal and acceptable. Their
joint consideration, however, offers a way to assess the robustness of the estimates [27].

For detailed discussions about the Propensity Score Matching (PSM) model specification,
assumptions, and matching algorithms, see [24]. The outputs of the PSM follow all the necessary steps
and fulfill the assumptions of the PSM models and algorithms. The estimates confirm a significant
reduction in bias from the matching procedure, indicating the equality of characteristics across
the user and non-user groups [28]. To further control for selection bias associated with unobserved
characteristics, we also estimate the sensitivity of our results to the potential hidden bias from these
confounding factors. We also perform a variety of robustness checks that increase the confidence of
our treatment effects [28]. To identify explanatory variables, we draw on literatures (See Table 1) that
emphasizes the importance of productive resources and social capitals as determinants of technology
adoption decisions [7,11–14,19–23]. Quantitative data analyses were carried out using Stata software
version 14.

Table 1. The synthesis of the study variables and measurement indicators.

Definition of Variable Measurement

Confounding
Factors

Household
Characteristics

Age of household
head Year

Family size Number

Dependency ratio The ratio of dependent and active family

Livestock size Size of livestock own in Tropical livestock unit
(TLU)

Frequency of
development agent

contact

Number of days in contact with development
agent per year

Sex of household
head 1 = male, 0 = female

Literacy status of
household head 1 = literate, 0 otherwise

Education level of
household head Years of schooling

Access to credit 1 = yes, 0 = no

Access to rainwater
harvesting training

1 if the household has access to rainwater
harvesting training, 0 otherwise

Distance from
home to district

market
Minute

Number of plots
owned Number

Plot
Characteristics

Use of improved
seed 1 = yes, 0 = no

Plot size Timad (one Timad is 0.25 hectare)

Plot distance from
dwelling Minute

Land tenure status 1 if the plot is owned, 0 if the plot is not owned

Plot distance from
road Minute
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Table 1. Cont.

Definition of Variable Measurement

Outcome Variables

Participation status
in road water

harvesting

1 if the household participates with the plot in
the use of RWHP, 0 otherwise

Crop yield Total amount of kilograms of harvest per plot

Crop productivity Amount of yield per timad

Annual crop
income

Total income obtained per plot from crop sell in
Ethiopian Birr (1 Ethiopian Birr (ETB) is

equivalent to 0.027 US dollar (NBE, 10 October
2020)

Amount of
fertilizer used

Amount of kilograms of inorganic fertilizer
used per plot

Amount of
farmyard manure

used

Amount of kilograms of farm yard manure
used per plot

Previous authors have suggested the need for a normality test in statistical analysis of numeric
dependent variables. Normality can be tested either by graphical or numerical approaches.
The numeric approaches are useful for making objective judgments of normality, but less sensitive
for small sample size or overly sensitive for large sample sizes, in this case graphical test of
normality is more preferable [29]. There are numerous graphic methods to test the normality
continuous data. The well-known graphic normality tests includes P–P Plot (widely known as
probability–probability plot or standardized plots), box plot, Q–Q Plot (quantile–quantile plot),
Shapiro–Wilk test, Kolmogorov–Smirnov test, and histograms [30]. As compared to other graphic
normality tests, P–P plots are more precise for large data sets. A P–P plot is a probability plot for
assessing how closely fit the expected and observed value of a given data sets. When the data sets are
normality distributed, the P–P plots become approximately a straight line. Data far apart from this
straight line indicates the existence of outliers and a lack of normality in the data set. By visualizing
the P–P plot, one can make a decision about outliers, skewness, and kurtosis, and hence this method of
normality test has become a very popular tool for testing the normality assumption [31]. Following
these extra advantages, its practical simplicity, and strengths in applied research, the P–P plot normality
test was used in this paper (see Appendix C).

3. Results and Discussion

3.1. Descriptive Results

Table 2 presents the profiles of the sample households. The descriptive results indicate that
non-users of road water harvesting were older (51.54 years) than the heads of user households (50.80
years). Households that engage in road water harvesting had fewer economically dependent family
members (1.27) than non-user households (1.51). RWH-user households owned more productive
resources (e.g., land and livestock) (4.88) than non-user households (4.48). The average plot size for
both users and non-users was 1.27 and 1.16 tsimd, respectively, implying slightly larger plot sizes for
RWH households. On average, users and non-users owned 2.7 and 2.69 plots, respectively.

On average, development agents contacted users 3.94 times per year and non-users 4 times per
year. In relation to education level, 68.63% and 32.13% of users and non-users, respectively, were
formally educated. This implies that a higher percentage of households with literate household heads
were beneficiaries of road water harvesting practices.
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Table 2. Profiles of the sample household (n = 159) and plots (n = 603).

Household Characteristics
Variable Means by Road Water

Harvesting Practice (Mean/Percent)

Non-User User

Age of household head (year) 51.54 50.80

Family size (number) 6.28 5.67

Dependency ratio (number) 1.51 1.27

Livestock size (TLU) 4.48 4.88

Frequency of development agents contact (number of contacts
per year) 3.94 4.0

Sex of household head
Female (%)
Male (%)

54.74
67.13

45.26
32.13

Literacy status of household head (%) 32.13 68.63

Education level of household head (years of schooling) 1.38 2.56

Access to credit (%) 31.86 32.08

Access to rainwater harvesting training (%) 31.94 32.16

Distance from home to district market (minutes) 62.75 49.76

Number of plots owned (number) 2.69 2.73

Plot Characteristics Non-User User

Use of improved seed (%) 54.2 48.8

Plot size (timad) 1.16 1.27

Plot distance from dwelling (minutes) 25.00. 16.03

Land tenure status (%) 16.3 83.7

Plot distance from road (minutes) 10.80 2.01

Crop yield (kg/plot) 240.08 317.56

Crop productivity (kg/timad) 805.93 904.89

Annual crop income (Ethiopian Birr/plot) 5432.58 7811.22

Amount of fertilizer used (kg/plot) 27.03 37.53

Amount of farmyard manure used (kg/plot) 137.51 296.80

The amount of fertilizer used by users and non-users was 37.53 kg/ha and 27.03 kg/ha, respectively.
Similarly, use of farmyard manure was higher for user households (296.80 kg/ha) compared to non-user
households (137.56 kg/ha). Road water harvesting users apply more inputs (e.g., fertilizer and farmyard
manure) compared to non-users. Users travel about 50 minutes to reach market centers, while non-users
reported travelling 73 minutes. On average, non-user plots were about a 10-minute walk from the road
and a 25-minute walk from their home. On the other hand, user plots were a 2-minute walk from
the road and a 16-minute walk from home.

As can be seen from the Table 3, from the 159 sample households 26 (16.4%) of them were female
headed households, while 133 (83.6%) of them were male headed households (see Table 3). Of the total
of female headed households, 45.26% of them were water harvesting users, while from the total of
sample male headed households, only 32.13% of them were users of road water harvesting (see Table 3).
Though the size of female sample household is smaller than male headed households, the intra gender
household (male/female) analysis result indicates the presences of higher proportion of females in
relation to uses of road water harvesting compared to that of the intra male gender headed households.



Sustainability 2020, 12, 8914 10 of 25

Table 3. Gender of the household heads (n = 159).

Sex of the Household Head Frequency Percent

Female 26 16.4
Male 133 83.6
Total 159 100.0

3.2. Factors Affecting Adoption of Road Water Harvesting Practices

Various statistical methods used for data analysis make assumptions about normality, including
correlation, regression, t-tests, and analysis of variance. If a continuous data follows normal distribution,
then it is recommended to present such data in mean values. These values are further used
to compare between the groups by calculating the significance level. If data are not normally
distributed, the resultant mean will not be a representative value of the data set. A wrong selection of
the representative value of data set and further calculated significance level using this representative
value might give wrong interpretation [29]. Following this background, in this paper, first we test
the normality of the data, then we checked whether the mean is applicable as a representative value of
the data or not. Once the mean is found applicable, the RWHP users and non-users group mean was
compared using parametric test, otherwise, medians would have been used to compare the groups,
using nonparametric methods. Such an approach has been widely used by several authors in impact
evaluation researches [27,32–34].

To examine factors that predict a farmer’s adoption or non-adoption of RWHP, we use a binary
probit regression model in which adoption takes the value of 1 and non-adoption takes the value
of 0 as a dummy dependent variable at a particular time (i.e., during the survey year). Table 4
presents the factors that affect the adoption of road water harvesting practices. Of the 11 variables
that are thought to influence adoption or non-adoption of RWHP, seven are found to be a statistically
significant influence on a farmer’s probability of adoption. The regression result indicates the presence
of enough information in the model to explain factors affecting uses/non-uses of water harvesting (x2 =

47.20, p = 0.00). The results suggest that both socioeconomic and plot characteristics are statistically
significant in conditioning a household’s decision to adopt road water harvesting practices. The results
further suggest that determinants of adoption can be broadly classified into social characteristics of
the household head, labor availability, and plot characteristics, which includes plot size and plot
distance from the infrastructure.

Increased distance from home to district market negatively and statistically significant influences
the adoption of RWH. This variable was statistically significant with p < 0.01 in the model. The marginal
effect of this variable indicates that as the walking distance to the district market center from the farmer’s
residence increases by one minute from the mean value, the probability of adopting RWHP decreases by
0.1 percent. The literature also shows a decrease in the rate of technology adoption with an increase in
the distance from markets [6]. Proximity is therefore an important factor in a farmer’s decision to adopt
technology, as it facilitates the spatial integration of the product and factor markets. Better market
connections reduce the transaction costs caused by information asymmetry and increase the availability
and uses of the support services that can promote technology adoption [34]. An empirical study in
Ethiopia found that access to markets and a shorter distance from rural towns affects the purchase of
inputs by rural households [19,24]. The negative relationship indicates that households living far from
roads are less likely to use road water harvesting practices; as such, plots get less attention from these
households and are less accessible via the small structures constructed through road water harvesting
projects. Prior to the systematic implementation of road water harvesting, empirical evidence [35]
shows that plots close to roads are negatively affected by water from roads (flooding, siltation, erosion).
After the implementation of road water harvesting, plots close to roads benefit more than those far
from roads for two main reasons: Farmers are able to connect road hydraulic structures to their farms
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and associated water storage units, and the available water from roads is limited, so plots far from
roads receive less runoff.

Table 4. Binary probit model on the adoption of road water harvesting technology (n = 603).

Variable
Characteristics Variables Coefficients Marginal

Effects Z-Value

Household
Characteristics

Age of household head −0.04 −0.14 −0.64
Dependency ratio −0.24 −0.08 −3.56 ***

Livestock size 0.02 0.007 1.05
Frequency of development agent

contact 0.02 0.006 1.10

Education level of household head 0.48 0.17 3.41 ***
Access to credit −0.15 −0.05 −1.24

Distance from home to district
market −0.001 −0.001 −1.66 *

Plot
Characteristics

Use of improved seed 0.52 0.02 4.23 ***
Plot size 0.07 0.02 2.17 **

Plot distance from dwelling −0.01 −0.003 −2.91 ***
Land tenure status 0.28 0.09 1.83 *

Model summery

Constant −0.44 −0.84
Number of observations 603

log likelihood −343.66
LR X2(5) 68.74

Prob > X2 0.000

Note: *, **, and *** represent statistical significances at the 10%, 5%, and 1% levels, respectively.

Similarly, increased distance between the farmer’s dwelling and the farm plot has a negative effect
on the adoption of road water harvesting. The results suggest that as the distance between the plot
and the farmer’s residence increases by one minute (walking), the probability of the use of RWHP
decreases by 0.3%. This is believed to be because the closer the plot is to the dwelling, the easier it is
for the family to supervise and manage the farm [14,21].

In addition, we found that an increase in land size has a statistically significant and positive impact
on the adoption of RWHP. Land size was statistically significant, with less than a 5% probability level
in the model. The marginal effect results indicate that, as the size of the plot increases by one hectare
from the mean, the probability of the use of RWH increases by 2%. The positive association between
the probability of adopting RWHP and farm size suggests the presence of economies of scale [21,22].
Moreover, farm size is often used as an indicator of wealth in agrarian settings, and the results here
may suggest that wealthier households are more likely to adopt innovations, because they may be
more able and willing to bear risks than their counterparts, and they may have preferential access to
inputs and credit.

Schooling is crucial to creating awareness and attitudes towards technology adoption. In this
study, years of schooling is found to positively influence the adoption of RWH technology. Our results
show that as years of schooling increase by one year, the probability of RWHP use increases by 17%;
this is similar to the findings of [24,36]. This is because education increases access to information
about innovation, inputs and their uses, and the management of technology, all of which are crucial
to creating positive attitudes towards technology adoption. Increasing farmers’ education via adult
learning and tailor-made training can thus be used as a tool to encourage the adoption of specific
agricultural practices.

Increasing the non-economically active family size of the household, as indicated by
the dependency ratio, is found to be negative and statistically significant at less than 1% probability for
the use of RWHP. Keeping other factors constant, the marginal effect indicated that as the dependency
ratio increased by one, the probability of using road water harvesting decreased by 8% from the mean.
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Labor issues seem to be of more concern in the decision to adopt RWHP. Specifically, the probability
of the use of RWHP increased with increased family size: An increase in family size results in an
increase in the number of household members who actively provided farm labor. This underscores
the importance of labor availability to the adoption of labor-intensive technologies [17]. In such
circumstances, it is important to consider strengthening and structuring existing local labor-sharing
mechanisms [21]. On the other hand, the probability of implementing RWHT declined with the number
of dependents in the household, capturing the intuitive expectation that the time spent caring for
dependents shifts labor away from labor-intensive activities.

The results of this survey revealed that the use of improved seed is an important variable in
differentiating adopters from non-adopters of RWHP in the study area. The coefficient of this variable
is positive and statistically significant at less than 1 percent probability level. Keeping all other factors
constant, the marginal effect of using improved seed results in a 2% increase in the probability of
adopting RWHP. Based on this result, we can conclude that experience in any extension program can
enable farmers to widen their knowledge of modern farm operations, including the adoption of RWHP.
Most importantly, experience in such programs enables farmers to perceive the risks and relative
advantages of new agricultural technologies more accurately.

With regard to land ownership, as indicated by land tenure status, our results show that
the probability of adopting RWHP is positively and statistically significant associated with farmers’
ownership of their plots, implying that rented plots are less likely to be selected for RWHP use
compared to owner operated plots. Farmers use RWHP on their own plots, rather than on leased plots;
tenure arrangements hinder RWHP adoption. Investment in RWHP decisions are related to ownership
security; the longer a farmer has owned their plot, the more likely it is that they will engage in land
management practices [37].

3.3. Impacts of Road Water Harvesting

The propensity score matching technique was used to analyze the impact of participation in
RWHP on uses of farmyard manure and fertilizer, yield, and income. The propensity score is defined
as the probability of receiving an intervention given pre-treatment covariates. In our analysis on
the impact of RWHP, we compared plots that used RWHP and those that did not (control) in terms
of uses of farm yard manure and fertilizer use, yield (physical grain yield (kg/plot) of the respective
crops), and income obtained from the major crops grown in the area (cereal and bean).

The performance of the matching model was checked through different tests. For this, the common
support region [0.11463415, 0.9895831], which ensures that the mean propensity scores for RWHP users
and non-users was selected. The common support region is a region where the values of propensity
scores of both adopters and comparison groups were defined. The region of common support will be
defined by dropping observations below the maximum of the minimums and above the minimum of
the maximums of the balancing scores between the two groups. Then, the Average Treatment Effect on
treated (ATT) are only determined in the region of common support. Average treated effect on treated
or ATT is the impact of adoption of the RWHP on the adopters in comparison with the non-adopters.

The balancing property is satisfied when the number of blocks is five. In addition, we ran a paired
t-test analysis on the covariates used to match adopter with non-adopter households. The difference
between these households was statistically insignificant after matching (for details of the robustness of
the PSM See Appendix B).

3.3.1. Impact of the Adoption of Road Water Harvesting Practices on Farmyard Manure and Fertilizer
Use

As shown in Table 5, RWHP users applied a higher rate of fertilizer compared to non-users.
Results from NN and SS show that users applied 5.06 (p < 1%) up to 8.11 kg (p < 5%) extra inorganic
fertilizer compared to non-users. Similarly, RWHP users were also found to apply additional farmyard
manure of 119 kg to 149 kg. This implies that the adoption of road water harvesting has a positive
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impact on farmyard manure consumption. These results show that the use of RWHP is important in
promoting complementary land management practices in the study area, as the coefficient of both
farmyard manure and fertilizer is positive and statistically significant; input uses are said to be more
responsive to water that results in higher production. Based on this result, we can conclude that
experience in any extension program can enable farmers to widen their knowledge of modern farm
operations, including the adoption of fertilizer. Most importantly, farmers know that moisture is
the major constraint in the application of inputs (fertilizers, etc.), and that ensuring adequate moisture
reduces the risk of crop failure.

Table 5. Impacts of road water harvesting, n = 603.

Outcomes Algorithms

Number of
Plots of
RWHP
Users

Number of
Plots of
RWHP

Non-Users

Average
Treatment Effect

on Treated
(ATT/impact)

Std. Err T-Value

Amount of
fertilizer

used

Nearest neighbor
matching (NN) 193 138 8.109 3.457 2.35 **

Radius matching
(RR) 193 404 9.60 2.27 3.58

Kernel matching
(KK) 193 404 5.06 3.84 1.46

Stratification
matching (SS) 193 404 5.36 0.84 6.35 ***

Amount of
farm yard
manure

used

Nearest neighbor
matching (NN) 193 138 139.84 71.45 1.96 *

Radius matching
(RR) 193 404 148.60 76.83 1.93 *

Kernel matching
(KK) 193 404 130.28 68.31 1.91 *

Stratification
matching (SS) 193 404 119.21 61.42 1.94 *

Crop yield

Nearest neighbor
matching (NN) 193 138 106.19 36.11 2.94 ***

Radius matching
(RR) 193 138 71.92 22.73 3.21 ***

Kernel matching
(KK) 193 404 59.84 14.84 4.03 ***

Stratification
matching (SS) 193 404 59.56 25.27 2.36 **

Annual
crop

income

Nearest neighbor
matching (NN) 193 138 3085.81 1543.42 2.00 **

Radius matching
(RR) 193 404 2351.56 900.79 2.61 ***

Kernel matching
(KK) 193 404 2512.72 3337.18 0.75

Stratification
matching (SS) 193 404 2556.04 1.351.20 1.89 *

Note: *, **, and *** represent the statistical significances at the 10%, 5%, and 1% levels, respectively.

3.3.2. Impact of the Adoption of Road Water Harvesting Practices on Crop Yield

The average computed difference on crop yield between RWHP user and non-user households
showed a statistically significant variation. The PSM results presented in Table 4 indicate that the RWHP
user households, on average, gained additional yields of 60 kg to106 kg per plot compared to non-user
households. The result is significant at p < 0.001 for NN, KK, RR matching, and at p < 0.05 for SS
matching. These results imply that compared to control plots, plots with RWHP gain statistically
significant higher yield levels. Specifically, RWHP positively and statistically significantly impacts
yield, not only through increasing water availability, but also by decreasing weeds and facilitating
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crop growth, enabling plots to escape moisture stress during critical crop growth stages in dryland
areas. In addition, RWHP also increases farmers’ confidence to invest in the crop through yield
enhancing inputs such as inorganic fertilizer and composites. This is in line with the descriptive
statistics results (see Table 2), where the amount of fertilizer and farmyard manure used is reported as
higher for RWHP-user households compared to that of non-users, indicating that RWHP use promotes
agricultural intensification through better input use and management practices. Water resilience
in agriculture aims at safeguarding water availability during periods of shocks, such as persistent
droughts [15]. There is hence a clear link between making use of roads for water and increased
productivity and resilience [6,7,14]. Some authors [38] estimate that every 10% increase in yields in
Africa leads to a 7% reduction in poverty.

3.3.3. Impact of the Adoption of Road Water Harvesting Practices on Household Income

The average computed difference in income between RWHP user and non-user households
showed a statistically significant variation. The PSM results presented in Table 5 indicate that RWHP
user households, on average, gain additional yields of 2512 to 3085 Ethiopian Birrs compared to
non-user households. The result is statistically significant at p < 0.001 for RR, at p < 0.05 for NN, and at
p < 0.1 for SS matching. This implies that there is a statistically significant mean income difference
between households that adopt RWHP and non-adopters. This finding is consistent with the findings
of various authors [4,36] who report that RWHP has a great impact on farm income.

4. Conclusions and Policy Implications

In this paper, we used both household and plot-level data from the semi-arid region of Tigrai,
Ethiopia to investigate the factors influencing farmers’ decisions to adopt RWH practices and its
impacts on input use, yield, and farm income. Binary probit regression and PSM were used to analyze
the data. With regard to factors that influence use of RWH, our results underscore the importance of
both plot and household characteristics on adoption decisions. Our findings imply that public policy
can affect the promotion of RWHP in drylands if based on an understanding of both household and
farm characteristics. The casual impact estimation from the propensity score matching suggests that
RWHP has positive and significant impacts on input uses (farmyard manure and fertilizer), crop yield,
and farm income among the sample households.

The findings presented in this paper have far-reaching implications for emerging climate-induced
agricultural challenges. Although relatively forgotten and underutilized, capturing water from
roadside drains, culverts, or road embankments is, in many cases, the easiest way to capture runoff.
The network of roads is fine-grained and, in many areas, fast increasing. The ability to better retain
water will help farmers to tide over drought periods and increase their capacity to deal with shocks.
Results from this research show that supplementary irrigation with water from roads increases input
use, crop yields, and farm income by mitigating intra-seasonal dry spells in the month of September,
which is the crop maturity period. Moreover, implementing water harvesting systems reduces the risk
of crop failure, making farmers more willing to invest in fertilizers and other agricultural inputs [19],
which will further increase crop yields and enhance resilience to climate-related shocks [39]. In this
paper, we argue that road water harvesting provides opportunities for packages of technology adoption,
such as yield enhancing inputs and a strategy to build adaptive capacity against shocks and extreme
events, by providing an extra source of water during dry spells, increasing soil moisture, and reducing
the risk of floods. In addition, water can be stored in ponds, shallow wells, and small dams, and can be
used for livestock or a second round of cash crop production during the dry season. This will provide
extra sources of income and therefore increase farmers’ resilience against adversities. Therefore,
the results suggest that policy interventions should encourage development of multifunctional
physical infrastructures (such as road) and promotion of community-based conservation behavior via
the well-known grassroot-oriented informal social networks mechanism among others.
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Some of the limitations of this study should be outlined. First, the data for this study were limited
to one point in time; as such, there was no temporal component to the analysis. Second, this study only
used a quantitative approach, and as such, some non-quantifiable qualitative variables that affect uses
of RWHP and its impacts may not be fully captured. Hence, while our goal was to show the causal
relationship between road water harvesting and its impacts, we recommend the use of panel and
mixed method approaches as an important next step to guide future research on the relationships
between RWHP and its multidimensional impacts.

Author Contributions: As principal author, K.M.G. designed this research, collected the data, analyzed the result,
and wrote the draft article. A.B. and K.T.G. participated in data collection, data analysis, and literature review and
drafting the manuscript. K.W.; F.v.S.; L.F.V., and T.A. participated in supporting the design, framing the overall
data analysis, interpreting the results, and reviewing the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The support of the Green Future Farming program and Global Resilience in the preparation
of this paper is acknowledged.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Appendix A. Econometric Model Estimation Procedures

The determinant of factors affecting the adoption of water harvesting technology was analyzed
using a binary probit model, which takes the value of 1 for road water harvesting users and 0 for
non-users. The probit model was employed because it is useful when an individual must choose
between two alternatives (in this case, either to adopt RWHP or not). A binary probit regression is
used to regress the dependent variable, Y, of whether the farmer had adopted RWHP:

Prob (event) = Prob (Y, 1 represents ith farmer adopted, and 0, otherwise)

Y = 1: adopted
Y = 0: otherwise

(A1)

Y = Xiβi + u (A2)

The probit model relates the probability of occurrence P of the outcome counted by Y to the predictor
variables X. The model takes the form

P (X) = Φ (β0 + β1 X1 + β2 X2 + + βk Xk) (A3)

where Φ (Z) is the standard normal cumulative distribution function.
The probit model stands for the cumulative normal probability function as below.

Y = β0 + β1 (X1) + β2 (X2) + . . . . . . . . . + βn (Xn) + εi (A4)

where: Y is the probability of the farmer’s participation in RWH; B is the parameters that are estimated
by the maximum likelihood; Xi is a vector of exogenous variables that explain participation in RWH;
and εi is the error term.

The effect of the adoption of water harvesting technology on input use, yield, and household
income is analyzed using the propensity score matching (PSM) model. PSM gives information by
comparing how the outcome variable differs for adopters and non-adopters of RWHP. The study
examines the effect of the adoption of RWHP on crop productivity, yield, and household income. PSM
enables us to see these effects, because it collects cross-sectional data. The probability of receiving
a treatment given control characteristics is:

P(X) = Pr{D = 1|X} = E{D|X} (A5)
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where D = {0, 1} is the indicator of exposure to treatment and X is the multidimensional vector of
pre-treatment characteristics. PSM can be estimated using a probit or logistic model. The study
employs the following binary probit model, because the data is cross-sectional:

yi = β0 +
n∑

i=1
βiXi + θDi + εi

n = 1, 2, 3
(A6)

where Yi = the dependent variable; Xi = vector of exogenous variable; βi = coefficient of
the parameter.

Di = is whether the adopters of road water harvesting practices (Di = 1) or not (Di = 0).
To estimate the mean impact of the adoption of RWHP on crop productivity, yield, and household

income is obtained by averaging the impact across all the individuals in the population. As a result,
given a population of units denoted by i, if the propensity score p (Xi) is known, the Average Effect of
Treatment on the Treated (ATT) can be estimated as follows:

ATT ≡ E {Y1i − Y0i |Di = 1}
ATT = E {E {Y1i − Y0i |Di = 1, p (Xi)}}

ATT = E {E {Y1i |Di = 1, p (Xi)} − E {Y0i |Di = 0, p (Xi)} |Di = 1}
(A7)

The estimate of the propensity score using a probit or logit model is not enough to estimate
the ATT. The probability of observing two units with exactly the same propensity score value is, in
principle, zero, because p(X) is a continuous variable. Therefore, this study used different methods of
matching to overcome this problem, such as Nearest Neighbor Matching, Radius Matching, Kernel
Matching, and Stratification Matching. The selection of these methods depended on the low mean and
media bias, low pseudo R2, and the insignificance of variables after matching.

Appendix B. PSM Model Fitness

• Testing the balance of covariates

After chosen the best performing matching algorithm, it is important check the balancing of
covariate using different procedures by applying the selected matching algorithm (nearest neighbor).
The treated and control group have no significant difference regarding those variables after matching,
because after matching all variables are insignificant. Clearly, after matching, the differences are
no longer statistically significant, suggesting that matching helps reduce the bias associated with
observable characteristics.

Table A1. The balance of covariates.

Variable
Characteristics

Variable
Before Matching (Mean) After Matching (Mean)

Treated Control t-Test Treated Control t-Test

Household
Characteristics

Age of household head 7.0471 7.1256 0.341 7.0563 7.068 0.912
Dependency ratio 1.2723 1.5125 0.003 1.2899 1.2201 0.412

Livestock size 4.8068 4.4806 0.206 4.5864 4.2425 0.203
Frequency of

development agents
contact

3.9896 3.9366 0.857 4.0437 4.5355 0.183

Education level of
household head 0.40625 0.27317 0.001 0.38251 0.40437 0.670

Access to credit 0.66667 0.66098 0.891 0.6776 0.62842 0.324
Distance from home to

district market 111.48 133.73 0.002 111.64 111.07 0.945
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Table A1. Cont.

Variable
Characteristics

Variable
Before Matching (Mean) After Matching (Mean)

Treated Control t-Test Treated Control t-Test

Plot
Characteristics

Use of improved seed 0.39583 0.22195 0.000 39344 0.25683 0.005
Plot size 4.3815 4.5244 0.488 4.2964 4.2787 0.940

Plot distance from
dwelling 15.417 24.81 0.000 15.787 16.885 0.637

Land tenure status 0.84896 0.83171 0.594 0.85246 0.79235 0.13

• Sensitivity analysis

The last step in propensity score matching is conducting a sensitivity analysis to check unmeasured
hidden variables. The rebound package was used to test the sensitivity of outcome variables. Table A2
indicated that the positive impact of outcomes is insensitive to unobserved selection bias.

Table A2. Sensitivity analysis.

Outcome Variables Gamma sig+ sig- t-hat+ t-hat- CI+ CI-

Amount of fertilizer used

1 0 0 25 25 25 26
1.05 0 0 25 25 25 27.5
1.1 0 0 25 25 25 30
1.15 0 0 25 25 25 30
1.2 0 0 25 25 25 32.5
1.25 0 0 25 27.5 25 32.5
1.3 0 0 25 30 25 35
1.35 0 0 25 30 25 37.5
1.4 0 0 25 30 25 37.5
1.45 0 0 25 32.5 25 37.5
1.5 0 0 25 32.5 25 37.5
1 0 0 25 25 25 26

Amount of Farmyard Manure
Used

1 0 0 3 3 −3.5e–07 50
1.05 0 0 −3.5e–07 10 −3.5e–07 50
1.1 0 0 −3.5e–07 25 −3.5e–07 50
1.15 0 0 −3.5e–07 25 −3.5e–07 50
1.2 0 0 −3.5e–07 50 −3.5e–07 50
1.25 0 0 −3.5e–07 50 −3.5e–07 50
1.3 0 0 −3.5e–07 50 −3.5e–07 50
1.35 0 0 −3.5e–07 50 −3.5e–07 60
1.4 0 0 −3.5e–07 50 −3.5e–07 75
1.45 0 0 −3.5e–07 50 −3.5e–07 100
1.5 0 0 −3.5e–07 50 −3.5e–07 100

Crop yield

1 0 0 201.5 201.5 200 225
1.05 0 0 200.5 225 200 250
1.1 0 0 200 225 200 250
1.15 0 0 200 225 175 250
1.2 0 0 200 250 175 250
1.25 0 0 200 250 175 250.25
1.3 0 0 181 250 175 251.25
1.35 0 0 175 250 155 275
1.4 0 0 175 250 151.25 275
1.45 0 0 175 250.5 150.625 275
1.5 0 0 175 251.25 150.25 300

Annual crop income
1 0 0 3585.37 3585.37 3187 3983.75

1.05 0 0 3234.8 3585.38 3187 3995.7
1.1 0 0 3202.93 3983.75 3187 4182.94
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Table A2. Cont.

Outcome Variables Gamma sig+ sig- t-hat+ t-hat- CI+ CI-

1.15 0 0 3192.98 3983.75 2788.63 4382.13
1.2 0 0 3187 3983.75 2788.63 4780.5
1.25 0 0 3187 3991.72 2788.62 4780.5
1.3 0 0 3187 4015.62 2438.06 4780.5
1.35 0 0 2812.53 4382.12 2410.17 4784.48
1.4 0 0 2788.63 4382.13 2402.2 4792.45
1.45 0 0 2788.62 4780.5 2398.22 4812.37
1.5 0 0 2788.62 4780.5 2394.23 5015.54

• Choosing a Matching Algorithm

Different matching algorithms can be used to estimate the average treatment effect. These include
kernel matching, radius matching, stratified, and nearest neighborhood matching. The selection of
the best matching algorithm depends on a large matched sample size, low pseudo R2, large number of
insignificant variables after matching, and low standardized mean bias. Therefore, the study used four
matching algorithms to estimate the treatment effect (kernel, nearest neighbor, radius, and stratification
matching).

Table A3. Performance of matching methods.

Matching Methods Ps R2 LR chi2 p > X2 Mean Bias Med Bias

Before matching 0.317 418.34 0.000 13.1 14.3
NNM (5) 0.006 4.89 0.998 4.2 4.1

KM (bind width .06) 0.006 5.62 0.897 5.3 6.1
RM (,06) 0.006 4.89 0.998 4.2 4.1

SS 0.006 4.89 0.998 4.2 4.1

Figure A1 indicates that, in the common support region, contributors and non-contributors of
similar characteristics are compared to each other when estimating the ATT. The common support
assumption is satisfied, because the treated and control group have been matched based on observable
characteristics. The region of common support is between 0.11463415 and 0.9895831. Common support
is subjectively assessed by examining a graph of propensity scores across treatment and comparison
groups (Figure A2). The vertical or Y-axis in the common support represents the “density”, whereas
the horizontal or X-axis displays the propensity score

Figure A2 plots the distributions of propensity scores before matching. Figure A3 indicated
the significance difference between treated and control groups before matching, implying the need to
use matching methods to balance the distribution of the treated and control groups.

Figure A3 depicts the distribution of the propensity scores after matching using a nearest neighbor
matching algorithm. The kernel density plots in Figure A4 indicate the distribution of the propensity
scores after matching between treated and control groups nearly overlap and are similar, justifying
the relevance of the use of nearest neighbor matching.
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Appendix C. Normality Test

A standardized normal probability plot was used to examine the normality of fertilizer (Figure A7),
farmyard manure (Figure A8), yield (Figure A9), and income (Figure A10). Based on the figures, we
observe that there is not much variability in the variables as well as outliers. Hence, the outcome
variables used in this paper are normally distributed and robust for the analysis.
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