Engineering Functions of Plants

Sanjaya Devkota, PhD FEED (P) Ltd. Jhamsikhel, Lalitpur

Relative strengths of various plant categories

Engineering Function	Trees	Woody Shrubs	Bamboos	Clumping Grasses	Non-woody Grasses	Other herbs
Catch	*	***	***	**	*	-
Armour	*	*	*	***	***	*
Reinforce	**	***	*	**	*	-
Anchor	***	**	***	-	-	-
Support	***	**	***	-	-	-
Drain	-	-	-	***	*	-

- *** Excellent** Good* Moderately useful
 - Not useful at all

Hydrological functions

S.No.	Functions	Effect
1	Leaves intercept raindrops before they hit the ground	Good
2	Water evaporates from the leaf surface	Good
3	Water is stored in the canopy and stems	Good
4	Large or localized water droplets fall from the leaves	Bad
5	Surface runoff is slowed by stems and grass leaves	Good
6	Roots increase the permeability of the soil leading to infiltration	Site dependent
7	Roots extract moisture from the soil, which is then released to the atmosphere through transpiration	Weather and site dependent

Mechanical functions

S.No.	Functions	Effect
1	Stems and trunks trap materials that are moving down the slope	Good
2	Roots bind soil particles to the ground surface and reduce their chances of erosion (i. e. Root Cohesion)	Good
3	Roots penetrating through the soil cause it to resist deformation (Root Anchor)	Good
4	Woody roots bind fragmented rocks together	Good
5	Woody roots may open the rock joints due to thickening as they grow	Bad
6	Root cylinder of trees holds up the slope above through buttressing and arching	Good
7	Tap roots pin down the overlaying materials to firmer stratum below	Good
8	Vegetation exposed to wind transmits dynamic forces into the slope	Bad

Hydraulic functions

S.No.	Functions	Effect
1	Stems and grass increase the roughness of the surface	Good
2	Increase in permeability leads to chances of seepage	Bad
3	Fully developed bioengineering techniques help in the formation of natural terraces with gentle slopes	Good
4	Closely lined grasses are most suitable for proper channelization of surface flow	Good

Tap roots and Lateral roots

- Tap roots are those growing vertically downwards;
- Tap roots provide the function of anchoring;
- Woody plants produced grown from seed usually develop best roots for anchorage;

Tap roots and Lateral roots

- Lateral roots are those growing sideways;
- Lateral roots provide the function of reinforcement (i. e. soil cohesion);
- Woody plants propagated from cuttings will produce the best shallow rooting system;
- Clumping grass usually develop a dense network of lateral roots;

Effective depth of roots

Plant type	Local name (Example)	Max. effective rooting depth
Small grass	Burmuda Grass (<i>Cynodon dactylon</i>)	100 mm
Large grass	Guinea Grass (<i>Anicum maximum</i>), Gamba Grass (<i>Andropogon gayanus</i>), Napier (<i>Pennisetum Purpureum</i>), Para Grass (<i>Brachiaria mutica</i>), Congosignal Grass (<i>Brachiaria</i> <i>ruziziensis</i>)	0.5 to 1 m
Large bamboo	Mula (<i>Bambusa bambos</i>)	1 m
Shrubs	Kadal cherry (), Muttamaram (), Oorakam (), Kattooram ()	1.5 m
Trees	Ashokam (<i>Saraca ashoca</i>), Rubber (), Kanikkonna (<i>Cassia fistula</i>)	2 m
Vetiver Grass		~3 m

Slope instability & Root Contribution:

Physically based infinite slope stability model (Chae et al. 2015) for LSM:

$$FS = \frac{(c_s + c_r) + \cos^2 \theta [A] \tan \phi}{D\rho_r g \sin \theta \cos \theta}$$

where,

$$A = \left[\rho_t g(D \left(D_{wf} \right) + (\rho_t g - \rho_w g) D_{wf} \right]$$

 ${}^{\prime}c_{x}{}^{\prime}$ is the plant roots cohesion (N/m²), ${}^{\prime}c_{s}{}^{\prime}{}^{\prime}$ is the soil cohesion (N/m²), ${}^{\prime}\theta{}^{\prime}$ is the slope gradient (⁰), ${}^{\prime}\rho_{t}{}^{\prime}{}^{\prime}$ is the soil density (kg/m³), ${}^{\prime}\rho_{w}{}^{\prime}{}^{\prime}{}^{\prime}$ is the density of water (kg/m³), ${}^{\prime}g{}^{\prime}{$

0