<u>Analysis method and result</u> of water resources potential

October 2017

JICA Project Team

C YACHIYO ENGINEERING CO., LTD.

RECS INTERNATIONAL INC.

Water balance analysis of Non-Nile

Catchment delineation

- 12 Basins- 191 sub-basins

Basin No.	Basin Area (km2)	Number of sub-basin included
1	164,809	12
2	252,981	16
3	109,502	9
4	51,877	5
5	154,047	17
6	231,983	15
7	167,209	18
8	166,851	18
9	96,469	10
10	310,123	32
11	88,998	15
12	75,708	10
Total	1,870,558	177

This sub-basin delineation is proposed to be used for water resources management in Non-Nile Area for the future Long-term Rainfall-Runoff Analysis

Input Data (Precipitation)

Available observed data by Sudan Metrological Authority is very limited (around 30 stations in the whole Sudan)

- Other observed data (such as the data of Ministry of Agriculture) will take time to collect and organize the data for input data within the limited time
- On the other hand, several global satellite observation data in high resolution are available freely (such as GSMaP by Jaxa, TMPA 3B42RT by NASA and so on)

Data	GSMaP ^{* 1)}	Observed data in Sudan	TMPA 3B42RT*
Data source / Organization	JAXA (Japan Aerospace Exploration Agency)	Sudan Meteorological Authority	NASA (National Aeronautics and Space Administration)
Year of observation	Mar. 2000 ~ Feb. 2014	Depends on the station (Before 1950 ~)	Mar. 2000 ~
Spatial Resolution	Approx. 10 km	26 observation stations	Approx. 25 km
Time interval	<mark>Every 1 hr</mark> , Daily	Daily	Every 3 hrs
Cost	Free	100,000 SDG (for 30 years)	Free
	Data Data source / Organization Year of observation Spatial Resolution Time interval Cost	DataGSMaP*1Data source / OrganizationJAXA (Japan Aerospace Exploration Agency)Year of observationMar. 2000 ~ Feb. 2014Spatial ResolutionApprox. 10 kmTime intervalEvery 1 hr, DailyCostFree	DataGSMaP *1Observed data in SudanData source / OrganizationJAXA (Japan Aerospace Exploration Agency)Sudan Meteorological AuthorityYear of observationMar. 2000 ~ Feb. 2014Depends on the station (Before 1950 ~)Spatial ResolutionApprox. 10 km26 observation stationsTime intervalEvery 1 hr, DailyDailyCostIoo,000 SDG (for 30 years)

¹⁾ GSMaP (http://sharaku.eorc.jaxa.jp/GSMaP/index_j.htm) * source: Annual business report in 2014, JAXA **Red**: Advantage, **Blue**: Disadvantage, **C**: Data to be used

GSMaP(JAXA)

Therefore, **GSMaP and observed data** in a Sudan were used in the Project

- GSMaP is different from the observed data
- → Average correlation coefficient of 18 stations in the south of Khartoum = 0.69

(*There is very weak correlation in the dry area in the north of Khartoum)

The GSMaP data was calibrated comparing the observed data

Source of isohyetal line: World Trade Press 2012

Average value = calibration value in each area

Input Data (Temperature for PET)

Similar situation as precipitation

Several global satellite observation data in high resolution are available freely

(such as CRU-TS3.1 by BADC, Worldclim by MBZ and so on)

Data	CRU-TS ¹⁾	Observed data in Sudan	Worldclim ²⁾
Data source / Organization	BADC (British Atmospheric Data Center)	Sudan Meteorological Authority	Museum of Vertebrate Zoology, University of California
Year of observation	1901 ~	Depends on the station (Before 1950 ~)	Gridded long-term averaged (1960 ~ 1990)
Spatial Resolution	Approx. 50 km	26 observation stations	Approx. 1 km
Time interval	Monthly	Daily	Only 12 monthly data @ each point (30-year averaged data)
Cost	Free	100,000 SDG (for 30 years)	Free

¹⁾ CRU-TS3.1 (<u>https://climatedataguide.ucar.edu/climate-data</u>) ²⁾ Worldclim (<u>http://www.worldclim.org/version1</u>)

Red: Advantage, *Blue*: Disadvantage, \Box : Data to be used

CRU-TS was used to calculate the average temperature

6

Input Data (Temperature for PET)

- The satellite data has slight differences with the observed data
- → Average correlation coefficient of 26 stations = 0.90

The purpose of the analysis is estimation and understanding of water resources roughly

- → Because of the target area is the entire Sudan and the limited available data for the analysis
- → Moreover, <u>"Participatory activity by Sudanese C/P for sustainable process" is essential</u>
- Considering above condition, "<u>free software, user-friendly (Graphical User</u> <u>Interface, GUI) and simple operation</u>" are the main criteria for selecting the calculation model
- Comparison of the major calculation models, which are selected considering the above criteria is as shown on <u>the following page</u>

Calculation Model

Comparison of Calculation Model

Model name	HEC-HMS	Shetran (GUI version)	Tank model (Excel)	ArcSWAT
Data source / Organization	US Army Corps of Engineers	Newcastle University	-	US Department of Agriculture ARS
Classification	Distributed (Grid / Sub-basin)	Distributed (Sub-basin model)	Lumped / Distributed (Grid / Sub-basin)	Quasi-distributed (Sub-basin model)
Interception of Rainfall	✓ (vegetation)	✓ (vegetation)	✓ (runoff ratio)	\checkmark

✓ Shetran was used for calculation of the entire Sudan

→ It enables C/Ps to operate calculation model simply and quickly

→ It meets the purpose of general calculation of the water potential in the entire Sudan

Channel flow	Kinematic wave, etc (select from many options)	1-dimensional	-	-
Last modified	Aug. 2016	Feb. 2016	-	-
Advantages	User can select the methods from many options for each element	 Simple and easy with GUI Calculation time is relatively short 	Calculation time is short	 Visually displayed input and output data on the map High-integrity
Disadvantages	 Complicated for beginner Calculation time is long with Grid model 	Grid model is not available with GUI version	Not GUI, but well- known software	 Difficulty in preparation and formulation of all the input data in GIS Long-term observed data is required

Red: Advantage, *Blue*: Disadvantage, **D**: Data to be used

Calculation result by Shetran

Example of trial-and-error calculation result

Shetran Setup v2.101	
<u>File</u> <u>H</u> elp <u>Q</u> uick Start	
Grid Module Vegetation Soils 1 Soils 2 Met and other input Results	XML File Preview Results Graph Text File Preview
Sinulated Discharge File DYSHETRAN_ume#Abuhabi#output_B88test_discharge_sim_hourly-z.bd Select. Preview Image: Color with the proview of the	AME THE FREW PREVIOUS OUT I LEX THE PREVIEW

Calculation result by Shetran

Example of calculation / Calibration result (sub-basin 83)

Comparison of the Observed and Calculated Data

Example of the Calculation Result

Sub-basin No.	C by %	S ilt %	S and %	Catchment Area (km2)	34-year A verage Annua I ra infa II (mm)	A verage annua l discharge (M C M)**	Discharge (MCM) / Area (1,000,000m2) *1,000 (mm)	R uno ff ratio d /b	Parameter applied from	Person for Cabulation
------------------	-----------	------------	------------	----------------------------	--	---	---	------------------------	---------------------------	--------------------------

✓ Total annual discharge of surface water in the entire Sudan was estimated as <u>4.05 BCM</u>

- The calculation result reaches project's objective and is serve as a basis for initial trials
- ✓ Preparation and calculation for almost all the 180 subbasins were implemented by the C/Ps with the assistance of the engineers of department of Wadi and Groundwater and the local staffs

91 22 17 61 12,351.93 378.2 54.54 4.42 0.012 - 1 117 23 29 48 4,484.18 285.5 29.59 6.60 0.023 - 1 118 21 34 45 4,228.02 396.4 41.29 9.77 0.025 - 1 187 55 15 30 11,395.07 81.6 9.67 0.85 0.010 -	sins 13
91 22 17 61 12,351.93 378.2 54.54 4.42 0.012 - 1 117 23 29 48 4,484.18 285.5 29.59 6.60 0.023 - - 1 118 21 34 45 4,228.02 396.4 41.29 9.77 0.025 - -	H ind
91 22 17 61 12,351.93 378.2 54.54 4.42 0.012 - 1 117 23 29 48 4,484.18 285.5 29.59 6.60 0.023 -	Um e
91 22 17 61 12,351.93 378.2 54.54 4.42 0.012 - I	Safaa
07 40 27 20 0,700.04 000.0 04.41 10.75 0.010	EITyeb
	Suzan

Efforts for the Calculation

Efforts for the Calculation

Calculation Result of Water Resources Potential on Surface Water in the Entire Sudan

Calculation Result of Water Resources Potential

	🔤 water_potential_calculation.pdf 🗙 🕂																27	ð	×
	C i File E:/old/all%20work/catchments/water_potential_calculation.pdf														វ៌	ć≡	Ē		
≣	1 of 1 Q		+	ବ	••		Aø	1	A		A		\Diamond	Ø		₽	2	ŝ	Q
	THE PROJECT FOR ENH	NC	FMF		OFIN	TECR	ATE			FSI		OF	Z MA	NAC	EM	FNT			

THE PROJECT FOR ENHANCEMENT OF INTEGRATED WATER RESOURCES MANAGEMENT IN THE REPUBLIC OF THE SUDAN

100

£

0

Ð

錢

-

08:31

18/01/2023

Table 4-13 Calculation Result of Water Resources Potential of Surface Water

Sub- basin No.	Clay %	Silt %	San d %	Catchment Area (km ²)	34-year Average Annual rainfall (mm)	Average annual discharge (MCM)**	Discharge(MCM) / Area (1,000,000m ²) *1,000 (mm)	Runoff ratio d / b	Parameter applied from	Sub- basin No.	Clay %	Silt %	San d %	Catchment Area (km ²)	34-year Average Annual rainfall (mm)	Average annual discharge (MCM)**	Discharge(MCM) / Area (1,000,000m ²) *1,000 (mm)	Runoff ratio d / b	Parameter applied from	
0	20	7	73	10,258.48	10.6	0.07	0.01	0.001	Sand	100	20	4	75	10,356.43	289.5	18.03	1.74	0.006	Sand	
1	20	2	78	529.72			•		•	101	25	14	61	10,846.89	283.1	28.22	2.60	0.009	88	
2	39	14	46	41,599.58	49.4	13.89	0.33	0.007	177	102	21	6	73	5,778.78	298.3	20.30	3.51	0.012	Sand	
3	22	6	68	30,415.17	7.1	0.89	0.03	0.004	Sand	103	22	6	71	11,104.77	354.2	13.22	1.19	0.003	60	
4	21	2	77	31,706.26	7.1	1.08	0.03	0.005	Sand	104	43	19	38	3,287.44	16.1	0.22	0.07	0.004	177	
5				•		(*)				105	33	12	54	2,311.55	18.9	0.09	0.04	0.002	177	
6	29	18	52	38,731.77	9.1	1.45	0.04	0.004	118	106	34	16	50	14,479.58	38.4	2.04	0.14	0.004	177	
7	43	16	41	14,648.12	22.6	1.35	0.09	0.004	177	107	43	19	38	4,984.80	18.8	0.41	0.08	0.004	177	
8	20	3	77	80,783.66	67.9	11.03	0.18	0.003	Sand	108	20	6	71	7,752.72	9.8	0.21	0.03	0.003	Sand	
9	31	15	53	16,824.36	12.8	0.67	0.04	0.003	177	109	20	3	78	3,286.41	10.3	0.05	0.01	0.001	Sand	
10	30	19	50	15,860.05	11.3	0.49	0.03	0.003	177	110	21	5	74	4,744.17	13.4	0.18	0.04	0.003	Sand	
11	23	18	59	8,842.91	11.0	0.20	0.02	0.002	177	111	28	14	58	5,762.19	11.2	0.19	0.03	0.003	118	
12	30	31	40	4,143.82	23.9	0.34	0.08	0.003	177	112	21	34	45	3,508.00	11.8	0.08	0.02	0.002	118	
13	48	17	36	6,317.68	114.0	3.81	0.60	0.005	187	113	28	27	45	5,180.67	11.8	0.22	0.04	0.004	118	
14	27	27	45	11,848.05	38.5	0.64	0.05	0.001	177	114	22	3	75	16,749.19	322.0	32.75	1.96	0.006	Sand	
15	20	3	77	16,748.51	11.6	0.88	0.05	0.005	Sand	115	20	35	45	5,933.78	286.0	22.76	3.84	0.013	118	
16	21	25	52	1,193.34	12.5	0.02	0.02	0.001	SCL+Sand	116	22	34	44	8,666.87	334.7	38.56	4.45	0.013	118	
17	20	5	75	245.28	121.7		•	-	Sand	117	23	29	48	4,484.18	285.5	29.59	6.60	0.023		
18	32	16	51	35,869.77	71.9	14.82	0.41	0.006	SandClay	118	21	34	45	4,228.02	396.4	41.29	9.77	0.025		
19	26	15	58	4,152.26	14.3	0.35	0.08	0.006	SCL+Sand	119	46	20	34	3,628.55	396.4	23.32	6.43	0.016	118	
20	28	8	63	16,830.98	44.3	3.30	0.20	0.004	SCL+Sand	120	35	25	39	8,821.76	408.2	51.53	5.84	0.014	118	
21	37	23	39	35,560.29	66.6	12.68	0.36	0.005	74	121		•		1.82	•	0.55			•	
22	37	21	42	8,792.81	44.9	2.53	0.29	0.006	177	122	44	29	27	4,723.83	150.0	6.22	1.32	0.009	118	
23	35	22	43	1,715.52	46.8	0.10	0.06	0.001	177	123	21	8	72	11,599.15	158.1	10.01	0.86	0.005	Sand	
24	39	26	35	11.46						124	23	7	70	3,651.31	158.1	5.54	1.52	0,010	Sand	lindous
25	43	27	30	33,545.45	207.3	24.10	0.72	0.003	74	125	34	11	55	6,294.06	255.8	9.02	1.43	0.006	110118 0	VINGOWS
26	41	26	32	7,091.54	237.3	9.87	1.39	0.006	74	126	26	12	62	7,731.30	255.8	16.37	2.12	0.008	o S ee tino	s to activate Windows
27	22	5	73	1,832.13	127.1	1.18	0.64	0.005	Sand	127	25	13	62	10,040.89	165.6	15.13	1.51	0.009	118	
122										1000	100	1000					1			

x∃

×I .	• ం				+Shetran_SWP_Sum	imary - Excel (Produ	ct Activation Failed)				? 🗹 –	∂ ×	
FILE	HOME INSERT	PAGE LAYOUT	FORMULAS D	ATA REVIEW	VIEW							Sign in 🚨	
Paste	Cut Copy ▼ Format Painter Sipboard □	libri • 11 <i>I</i> <u>U</u> • ⊡ • Font		≡ ॐ • ▶¶ • 5 ≡ €≣ 5Ξ Alignm	Wrap Text	Custom		onal Format as Cel ing * Table * Styles Styles	I Insert Delete F	Tormat ▼ AutoSur ↓ Fill ↓ Clear ↓	n • Arr Arr Arr Arr Arr Arr Arr Arr Arr A	~	
K10 ▼ : × ✓ f _x 0.350133689592													
	A B	С	D	Е	F	G	Н	I	J	K	L	^	
1	Annual	Discharg	e [MCM	/year]									
2		0a	0b	Ototal	1	2	3	4	5	6	7	8	
3	1981	0.00	0.00	0.00	0	0.00	0.00	0.00	0	0.00	0.05		
4	1982	0.00	0.02	0.02	0	38.25	0.00	0.00	0	0.00	0.08		
5	1983	0.00	0.00	0.00	0	11.06	0.00	0.00	0	0.00	0.18		
6	1984	0.00	0.00	0.00	0	10.87	0.00	0.00	0	0.00	0.00		
7	1985	0.00	0.00	0.00	0	38.35	0.00	0.00	0	0.00	0.05		
8	1986	0.00	0.00	0.00	0	25.96	0.00	0.00	0	0.00	0.56		
9	1987	0.00	0.00	0.00	0	1.41	0.00	0.00	0	0.92	0.54		
10	1988	0.05	0.16	0.21	0	1.87	0.92	1.82	0	0.35	0.14		
11	1989	0.00	0.00	0.00	0	11.65	0.16	0.48	0	0.62	0.51		
12	1990	0.00	0.00	0.00	0	9.11	0.01	0.01	0	Activate Wind	dows 0.01		
4	> Sheet1	(+)					: 4			Go to Settings to	activate Window	S.	
READY												+ 175%	
	✓ Type here to s	search	AN CO	H 📃 🤇) 🧿 💴		P3		🥚 18°C Sunny		\$\$\$\$ \$	3	
