

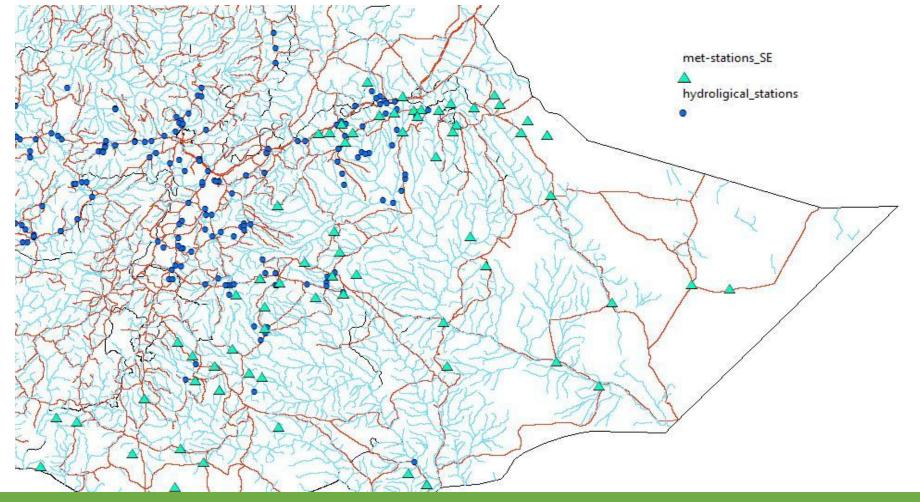
Green Roads for Water Training in Sudan Wad Madani, 15-20 January 2023

Remote Sensing Methods

Remote Sensing for Rainwater Harvesting and Recharge Estimation under Data Scarce Conditions

Most are the most sought parameters for WH

- runoff,
- evapotranspiration and
- recharge



Are they available & reliable for use where WH is most needed?

What is the possible way-out?

- Oral sources ask elderlies about the local situation
 - Difficult to qualify and quantify
 - Less spatial and temporal reliance, particularly in understanding the overall hydrodynamics
- Remote sensing data sources
 - Require conducive data capturing facilities
 - Need expertise to acquire, analyze and process data and customize models
 - Require calibration, validation has to pass through pilot phase

What sort of data is available?

- Rainfall and temperature d data-
 - Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)
 - METEOSAT (high spatial resolution)
 - STAR Satellite Rainfall Estimates
 - CMORPH
 - Special Sensor Microwave /Image (SSM/I) since 1978
 - Operational Hydro-Estimator (HE) Satellite -since 2002every 15mnt
 - Tropical Rainfall Measuring Mission (TRMM) since Nov 1997 but ended on April 15,2015

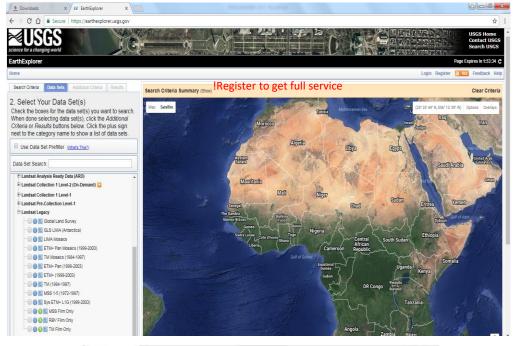
What sort of data is available?

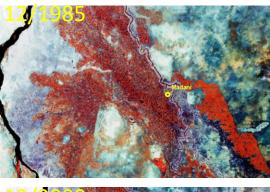
- Global Estimates & Predictions
 - National Center for Environmental Predication (NCEP)
- Combined system of observed and satellite estimates
- Moisture Estimate
 - Gravity Recovery and Climate Experiment (GRACE)- since March 2002
 - GPR, , ..
- Image
 - Optical
 - Landsat- since 1972
 - Radar

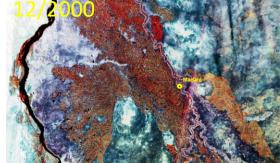
Acquiring data

Low and high spatial, temporal resolution multispectral and RADAR satellite images, digital terrain models and satellite rainfall estimates are required for such data-scarce watersheds. The following links are some of the online data sources

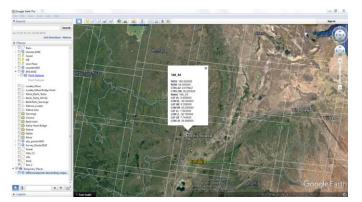
> <u>https://earthexplorer.usgs.gov/</u> <u>https://scihub.copernicus.eu/dhus/#/home</u> <u>https://climateserv.servirglobal.net/</u> <u>https://search.asf.alaska.edu/</u>



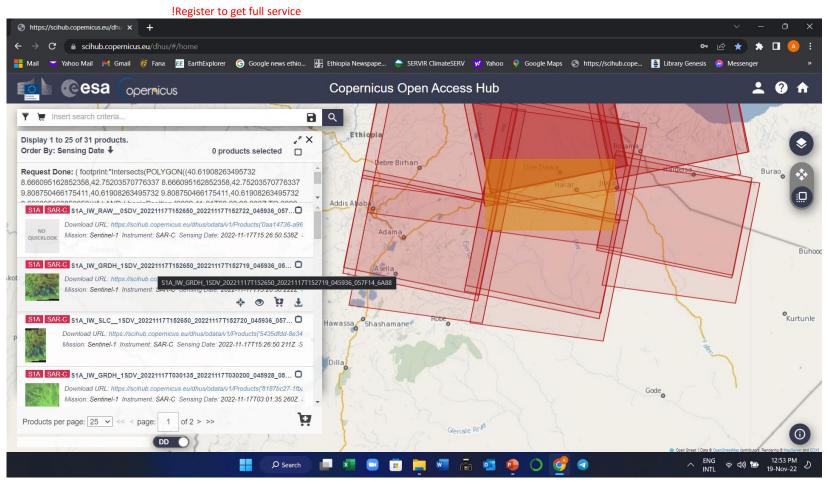




Satellite image and Digital Terrain Models

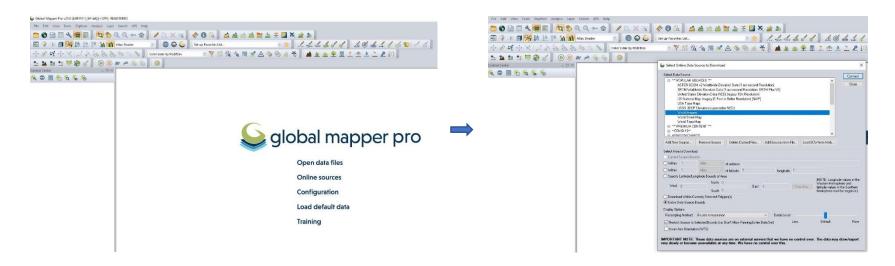


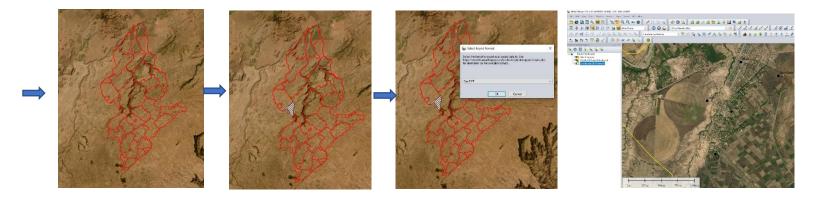
Use Path/Row Shapefile on a map or Path/Row kml on Google Earth to find path and row of your geographic area of interest.



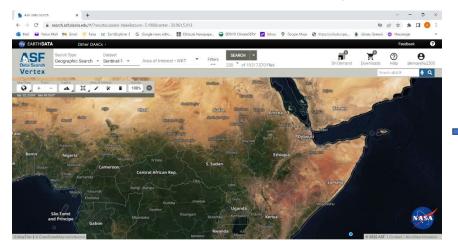
Sentinel Images and many other important products

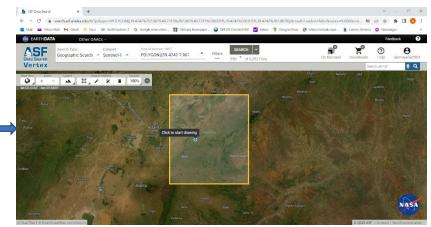
https://scihub.copernicus.eu/dhus/#/home

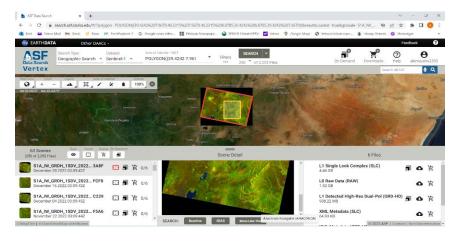


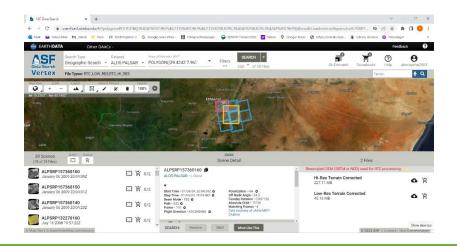


Very High Spatial Resolution Image Using Global mapper online sources

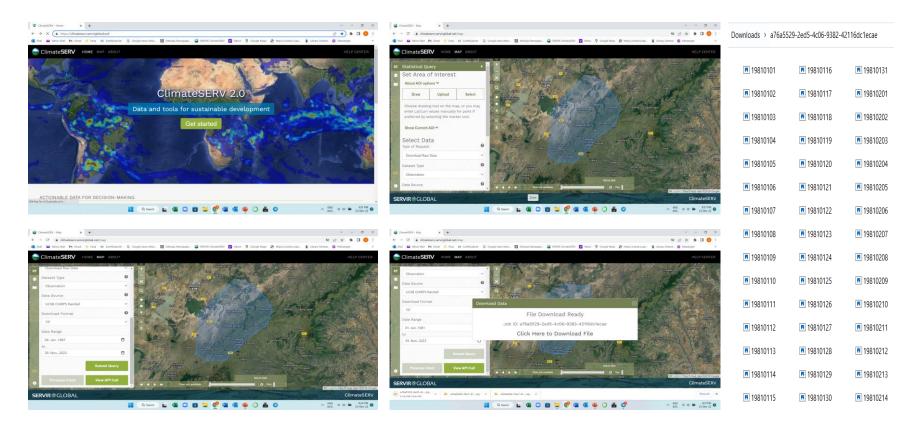







High Spatial Resolution Terrain Model, Image ASF Data Search

https://search.asf.alaska.edu/



CHIRPS Rainfall

https://climateserv.servirglobal.net/

15308 files

Optional RO, ET & RE Estimation method

using RS and hybrid data

• Objective

• To estimate runoff, evapotranspiration and recharge to implement water harvesting project in specific data scarce watershed

Method

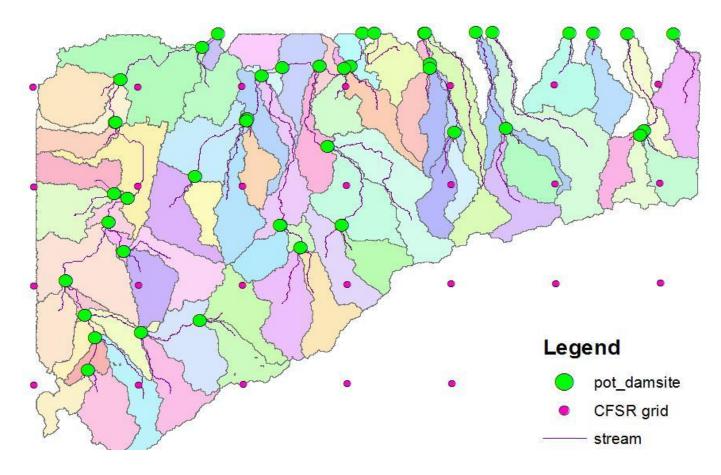
- Image processing
- Modeling

Data type

- Estimated and predicted data for hydro-metreological parameters
- Optical and Radar images to generate land use and topographic features

Software

MS Office, Image processing and GIS softwar

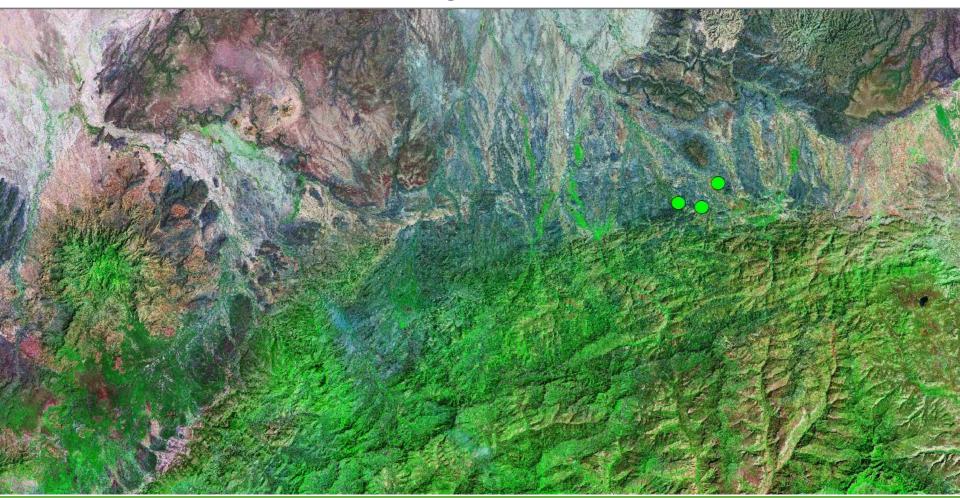


Target watershed delineation from SRTM30M V3

Required data type

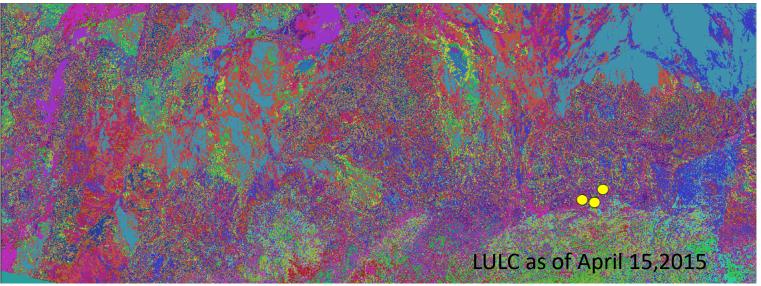
for both 'Bega' and 'Kiremt' seasons

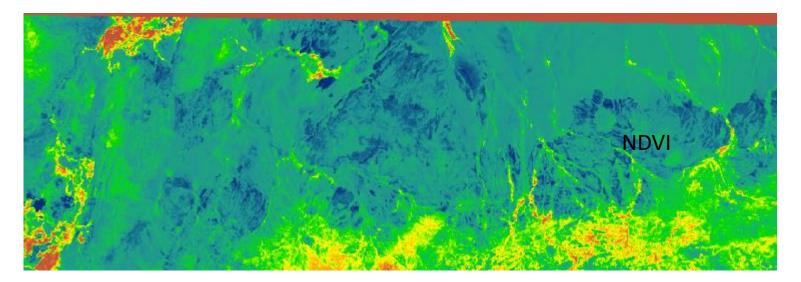
- Landuse/Landcover
- Precipitation
- Potential Evapotranspiration
- Wind speed
- Temperature
- Groundwater depth
- Soil
- Slope Topography
- Parameters
 - Landuse/Landcover parameters
 - Soil coefficient
 - Runoff coefficient



Landsat Image

To generate Landuse/Landcover

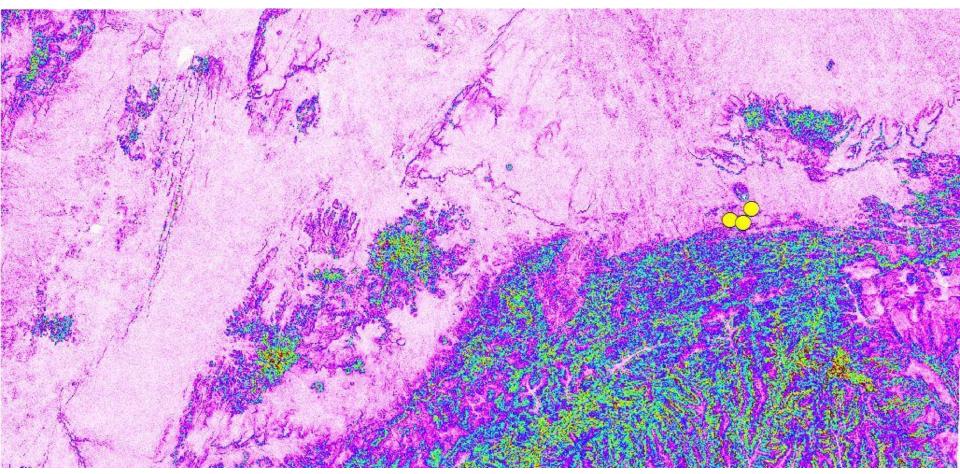




Preparing required data input Landuse/Landcover

• Can be generated from recent Landsat 8 data- sing in:

Preparing required data input... Topography- from SRTM30M V3

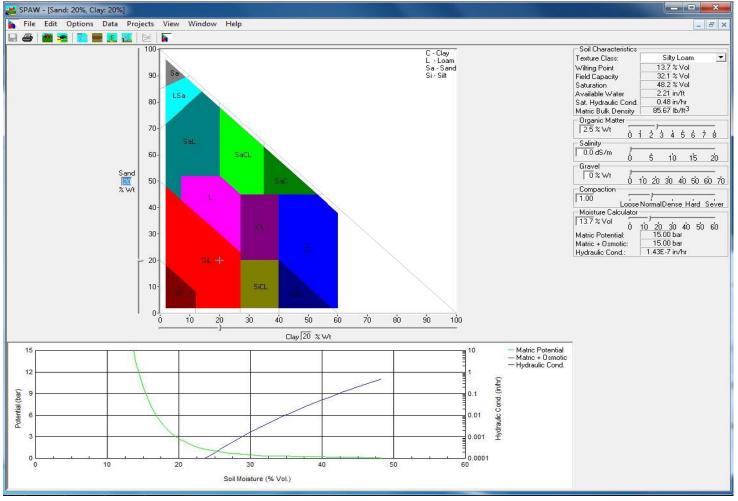


Preparing required data input...

Slope - from SRTM30M V3

Preparing required data input...

- Groundwater depth
 - Estimates deduced from interpretation of satellite images for geology, hydrogeology and climate parameters generated from CFSR data
 - Observation of existing wells, springs will help to validate



Preparing required data input...

Soil- in USDA soil class

Required data type

Hydro-meteorological parameters :

- Precipitation
- Potential Evapotranspiration
- Wind speed
- Temperature
- Groundwater depth
- Parameters
 - Landuse/Landcover parameters
 - Soil coefficient
 - Runoff coefficient

Where and why, we need RS data in puts?

	sand %	sand %	silt %	silt %	clay %	clay %	pH2O	pH2O	OC %	OC %	N %	N %	BS %	BS %	CEC	CEC
	topsoil	subsoil	topsoil	subsoi												
Α	53.3	44.3	17.2	17.1	29.5	38.6	5.2	5.2	1.74	0.63	0.17	0.08	37	29	8.7	1 33
AF	61.7	52.5	14.4	12.9	23.9	34.6	5.4	5.3	0.91	0.34	0.12	0.06	43	34	7.8	6.
AF 1	81.1	75.5	8.7	8.9	10.2	15.6	5.7	5.5	0.35	0.2	0.07	0.03	47	43	4.4	4.
AF 2	61.7	44.5	14.3	10.8	24	44.7	5.1	5.2	1.05	0.37	0.11	0.03	37	28	9.6	7.
AF 3	21.3	13.1	25.7	24.4	52.9	62.3	5	4.9	1.85	0.58	0.15	0.1	42	23	12.5	11.
AG	40.9	36.8	27.2	29.7	32.1	33.4	5.1	4.9	2.26	0.34	0.11	0.03	22	16	11.2	9.
AG 1	89.3	72.5	7.2	9.5	3.5	17.9	5.5	5.1	-1	-1	0.02	-1	55	34	1.2	2.
AG 2	9.6	15.8	75.2	64.7	15.3	19.6	4.4	4.2	3.07	0.25	0.14	0.03	8	15	12.5	11.
AG 3	35.2	32	17.9	24.8	47.2	43.2	5.2	5.1	1.99	0.38	0.18	-1	16	11	14.1	11.
AH	31.3	27.1	24.8	25.1	43.8	47.8	5	5.4	3.34	1.49	0.29	0.14	20	16	18	17.
AH 1	72.8	71.9	14.6	10.6	12.6	17.4	5	5	1.58	0.9	0.28	0.12	6	5	28.4	2
AH 2	52.4	45.4	27.9	33	19.6	21.5	5.1	5.7	4.46	1.95	0.36	0.17	4	6	7.3	1.
AH 3	9.2	7.4	26.1	22.2	64.8	70.4	5	5.3	2.88	1.25	0.25	0.13	27	21	18.1	19.
AO	53.6	43.4	15.8	16	30.6	40.6	5.1	5.2	2.25	0.75	0.18	0.07	39	32	7.6	7.
AO 1	82.3	68.1	8.6	11.4	9.2	20.5	5	5.1	0.3	0.21	0.06	0.02	41	41	4.1	5.
AO 2	51	41.3	21.6	17.2	27.4	41.5	5.3	5	1.73	0.73	0.13	0.08	53	34	7.7	7.
AO 3	33	28.9	14.2	15.5	52.9	55.6	5.2	5.4	1.84	0.89	0.12	0.07	31	28	8.6	6.
AP	57	46.2	15.6	17.1	27.1	36.8	5.3	5	1.09	0.26	0.09	0.03	31	17	6	5.
AP 1	80	65.1	12	14.6	7.8	20.3	5.6	5	0.69	0.2	0.05	0.02	40	19	3	3.
AP 2	58.7	45.4	16.3	17.4	25	37.1	5.8	5.6	0.87	-1	0.07	-1	28	20	6	6.
AP 3	10.4	8.8	22.7	22	66.7	69.6	4.5	4.6	2.91	0.49	0.23	0.05	17	13	12.1	10.
В	60.4	60	17	16.6	22.5	23.4	6.9	7.2	1.17	0.57	0.25	0.12	79	80	14.2	12.
BC	40.1	41.8	21.5	22.7	38.4	35.5	5.7	5.8	1.44	0.74	0.17	0.09	67	68	15.7	18.
BC 1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	2
BC 2	56.7	56.8	23.6	20.6	19.8	22.5	5.8	5.9	1.22	0.61	0.13	0.08	81	82	15.6	18.
BC 3	15.3	19.3	18.5	25.7	66.3	55	5.6	5.6	1.77	0.93	0.24	0.12	47	48	15.9	2
BD	32.7	29.8	30.3	37.6	37.1	32.3	4.9	5.3	3.28	0.87	0.23	0.05	16	20	19.1	14.
BD 1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-
BD 2	39.9	38.2	34.1	38.4	26	22.7	5.4	5.8	4.26	1.33	0.29	0.06	23	33	17.6	14.
BD 3	27.8	24.2	27.8	37	44.4	38.8	4.6	5	2.62	0.57	0.21	0.04	12	11	20.1	13.
BE	36.4	41.7	37.2	32.1	26.4	26.3	6.9	7.1	1.07	0.51	0.18	0.04	88	88	20.7	19.
BE 1	84.5	78.3		7.6	10.4	15.4	6.7	6.6				-1	65	66		

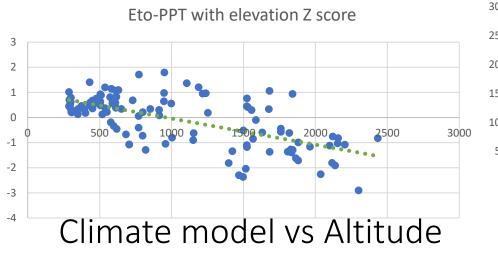
Where and why we need RS data in puts?

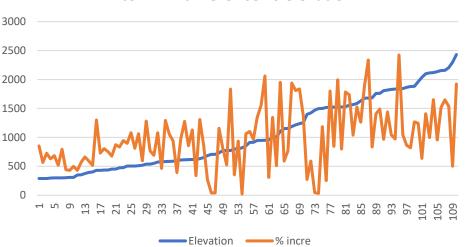
	sand % topsoil	sand % subsoil	silt % topsoil	silt % subsoil	clay % topsoil	clay % subsoil	pH2O topsoil	pH2O subsoil	OC % topsoil	OC % subsoil	N %	N %	BS % topsoil	BS % subsoil	CEC topsoil	CEC subsoil
A	53.3	44.3		17.1	29.5	38.6	5.2	5.2	1.74	0.63	-	0.08	37		8.7	300301
AF	61.7	52.5		12.9	23.9	34.6	5.4	5.3	0.91	0.34	0.12	0.06	43	34	7.8	6.
AF 1	81.1	75.5		8.9	10.2	15.6	5.7	5.5	0.35	0.34		0.03	43	43	4.4	4.
AF 2	61.7	44.5		10.8	24	44.7	5.1	5.2	1.05	0.2	0.11	0.03	37	28	9.6	7.
AF 3	21.3	13.1	25.7	24.4	52.9	62.3	5	4.9	1.85	0.58	0.15	0.03	42	23	12.5	11.
AG	40.9	36.8		29.7	32.1	33.4	5.1	4.9	2.26	0.34	0.11	0.03	22	16	11.2	
AG 1	89.3	72.5		9.5	3.5	17.9	5.5	5.1	-1	-1	0.02	-1	55	34	1.2	
AG 2	9.6	15.8		64.7	15.3	19.6	4.4	4.2	3.07	0.25	0.02	0.03	8	15	12.5	11.
AG 3	35.2	32		24.8	47.2	43.2	5.2	5.1	1.99	0.38	0.14	-1	16	11	14.1	11.
AH	31.3	27.1	24.8	25.1	47.2	47.8	5.2	5.4	3.34	1.49	0.29	0.14	20	16	14.1	17.
AH 1	72.8	71.9		10.6	12.6	17.4	5	5	1.58	0.9		0.14	6	5	28.4	2
AH 2	52.4	45.4		33	19.6	21.5	5.1	5.7	4.46	1.95	0.36	0.12	4	6	7.3	1.
AH 3	9.2	7.4		22.2	64.8	70.4	5	5.3	2.88	1.25	0.25	0.13	27	21	18.1	19.
AO	53.6	43.4		16	30.6	40.6	5.1	5.2	2.25	0.75	0.18	0.07	39	32	7.6	
A0 1	82.3	68.1	8.6	11.4	9.2	20.5	5	5.1	0.3	0.21	0.06		41	41	4.1	5.
AO 2	51	41.3		17.2	27.4	41.5	5.3	5	1.73	0.73	0.13	0.08	53	34	7.7	7
AO 3	33	28.9		15.5	52.9	55.6	5.2	5.4	1.84	0.89	0.12	0.07	31	28	8.6	
AP	57	46.2		17.1	27.1	36.8	5.3	5	1.09	0.26	0.09	0.03	31	17	6	
AP 1	80	65.1	12	14.6	7.8	20.3	5.6	5	0.69	0.2		0.02	40	19	3	
AP 2	58.7	45.4		17.4	25	37.1	5.8	5.6	0.87	-1	0.07	-1	28	20	6	6.
AP 3	10.4	8.8		22	66.7	69.6	4.5	4.6	2.91	0.49	0.23	0.05	17	13	12.1	10.
B	60.4	60		16.6	22.5	23.4	6.9	7.2	1.17	0.57	0.25	0.12	79	80	14.2	12
BC	40.1	41.8		22.7	38.4	35.5	5.7	5.8	1.44	0.74	0.17	0.09	67	68	15.7	18.
BC 1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-
BC 2	56.7	56.8		20.6	19.8	22.5	5.8	5.9	1.22	0.61	0.13	0.08	81	82	15.6	
BC 3	15.3	19.3		25.7	66.3	55	5.6	5.6	1.77	0.93	0.24	0.12	47	48	15.9	2
BD	32.7	29.8		37.6	37.1	32.3	4.9	5.3	3.28	0.87	0.23	0.05	16	20	19.1	14
BD 1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1.0
BD 2	39.9	38.2		38.4	26	22.7	5.4	5.8	4.26	1.33		0.06	23	33	17.6	14
BD 3	27.8	24.2		37	44.4	38.8	4.6	5	2.62	0.57	0.21	0.04	12	11	20.1	13
BE	36.4	41.7		32.1	26.4	26.3	6.9	7.1	1.07	0.51	0.18	0.04	88	88	20.7	19
BE 1	84.5	78.3		7.6	10.4	15.4	6.7	6.6	0.2	0.2		-1	65	66	8.9	12

1	VALUE	COUNT	Abreviation	Red	Green	Blue
5	5	11164	5 = Ap - Plinthic Acrisols	204	113	67
6	6	65229	6 = Ao - Orthic Acrisols	224	148	110
7	8	3462	8 = To - Ochric Andosols	38	73	97
8	9	2522	9 = Th - Humic Andosols	60	99	125
9	10	1176	10 = Tm - Mollic Andosols	86	136	163
10	11	8221	11 = Tv - Vitric Andosols	109	144	163
11	13	2672	13 = Qa - Albic Arenosols	232	123	123
12	14	37523	14 = Qc - Cambic Arenosols	255	161	161
13	15	34739	15 = Qf - Ferralic Arenosols	255	190	190
14	16	9760	16 = QI - Luvic Arenosols	255	222	222
15	17	6835	17 = E - RENDZINAS	166	143	96
16	18	3068	18 = C - CHERNOZEMS	128	107	66
17	19	1361	19 = Cg - Glossic Chernozems	115	92	47
18	20	18335	20 = Ch - Haplic Chernozems	115	76	0
19	21	5540	21 = Ck - Calcic Chernozems	105	86	48
20	22	12012	22 = CI - Luvic Chernozems	97	84	59
21	23	1728	23 = X - XEROSOLS	138	138	0
22	24	14288	24 = Xh - Haplic Xerosols	168	168	0
23	25	31631	25 = Xk - Calcic Xerosols	176	176	97
24	26	15808	26 = XI - Luvic Xerosols	199	199	117
25	27	793	27 = Xy - Gypsic Xerosols	204	204	133
26	29	9549	29 = Bc - Chromic Cambisols	115	50	15
27	30	35086	30 = Bd - Dystric Cambisols	115	63	34
28	31	39807	31 = Be - Eutric Cambisols	115	72	34
29	32	3942	32 = Bg - Glevic Cambisols	115	85	40
30	33	2840	33 = Bf - Ferralic Cambisols	161	117	117
31	34	7092	34 = Bh - Humic Cambisols	140	86	86
32	35	11573	35 = Bk - Calcic Cambisols	115	69	69
33	36	3003	36 = Bv - Vertic Cambisols	115	41	41
34	37	65391	37 = Bx - Gelic Cambisols	115	0	0
35	38		38 = J - FLUVISOLS	0	168	132
36	39		39 = Jc - Calcaric Fluvisols	38	191	158
37	40	- 12,2,4 St -	40 = Jd - Dystric Fluvisols	0	230	169
38	41		41 = Je - Eutric Fluvisols	135		

Climate Parameters- CFSR

- Hourly data Climate Forecast System Reanalysis (CFSR) is available since 1979 to June, 2014)
 - Ground, upper air balloon, aircraft and satellite observation are assimilated in this estimate
 - High horizontal resolution ~ 47km @ the equator
 - Provide many variables
 - Maximum temperature
 - Minimum temperature
 - Precipitation
 - Wind speed
 - Relative humidity and
 - Solar radiation




Climate Parameters- CFSR...

Checking data quality

Model parameters

- High PET values
 - Net vs total radiation ?
 - No bias corrected data for eth.?

Eto - PPT difference vs elevation

Bias correction

A second method called **"delta approach"** that corrects only the mean and which resulted in a better match was used by

Geremew & Agizew, 2015. The

formulas used for temperature and rainfall bias correction are indicated in Equations 1 and 2. Corrections factors were computed for each month.

 $P_{bc} = P_p \times \frac{\overline{P}_o}{\overline{P}_r}$

 $T_{bc} = T_p + \overline{T}_o - \overline{T}_r$

Where,

- *Pbc* is Bias corrected future rainfall amount in mm; *Pp* is predicted future rainfall amount in mm;
- *Po* is mean of observed rainfall amount in mm; *Pr* is mean of computed historical rainfall during the observation period in mm.
- *Tbc* is Bias corrected future temperature in °C;
- *Tp* is predicted future temperature °C;
- *T o* is mean of observed temperature °C;
- Tr during the observed period in °C

Hydrological Inputs- data preparation

Date	Longitude	Latitude	Elevation M	Max Temp	Min Tem	Precipita Wind	Relative I	Solar	ETo=COL(S	427	1 Lon	gitude	Latitude					ETo=COL(S+		Relative H		Date	Date	Date
1/1/1979	35	5.464	611	31.383	19.783	0 2.735787	0.290037	23.72215	9.710326	2		35	5.464	611	31.2232	19.1561	6.00386	273.9181	2.97718	0.45519	21.7318	1/1/1979	1/1/1979	6/1/1979
1/2/1979	35	5.464	611	31	16.985	0 2.668442	0.320819	25.29653	8.026906													2/1/1979	2/1/1979	7/1/1979
1/3/1979	35	5.464	611	30.758	17.235	0 3.296837	0.32758	25.39254	8.966562													3/1/1979	3/1/1979	8/1/1979
1/4/1979	35	5.464	611	31.321	17.651	0 3.237821	0.344166	25.41156	9.286115													4/1/1979	4/1/1979	9/1/1979
1/5/1979	35	5.464	611	31.406	16.013	0 2.740741	0.311086	25.47776	10.13427													5/1/1979	5/1/1979	6/1/1980
1/6/1979	35	5.464	611	31.288	17.745	0 3.076374	0.385202	25.19365	10.08871													6/1/1979	10/1/1979	7/1/1980
1/7/1979	35	5.464	611	30.173	18.478	0 3.462471	0.492735	22.95287	8.676521													7/1/1979	11/1/1979	8/1/1980
1/8/1979	35	5.464	611	30.885	18.203	0 2.763151	0.494266	20.98727	7.716868													8/1/1979	12/1/1979	9/1/1980
1/9/1979	35	5.464	611	31.145	18.753	0 3.064657	0.460182	25.10364	7.93713													9/1/1979	1/1/1980	6/1/1981
1/10/1979	35	5.464	611	31.367	17.933	0 2.844268	0.461025	25.18954	9.684293													10/1/1979	2/1/1980	7/1/1981
1/11/1979	35	5.464	611	30.516	19.572	0 3.370039	0.469463	21.72134	9.436641													11/1/1979	3/1/1980	8/1/1981
1/12/1979	35	5.464	611	31.189	19.502	0 3.679965	0.467845	21.31138	8.709952													12/1/1979	4/1/1980	9/1/1981
1/13/1979	35	5.464	611	31.021	19.003	0.73128 4.446189	0.514871	24.35187	7.881042													1/1/1980	5/1/1980	6/1/1982
1/14/1979	35	5.464	611	30.513	19.377	0.4137 4.737021	0.519585	25.24224	8.701655													2/1/1980	10/1/1980	7/1/1982
1/15/1979	35	5.464	611	30.958	18.486	0 3.649688	0.504547	25.35379	7.826445													3/1/1980	11/1/1980	8/1/1982
1/16/1979	35	5.464	611	30.241	19.075	0 3.323296	0.500077	22.87125	8.427795													4/1/1980	12/1/1980	9/1/1982
1/17/1979	35	5.464	611	31.525	18.784	0 3.709304	0.474055	23.8923	9.145345													5/1/1980	1/1/1981	6/1/1983
1/18/1979	35	5.464	611	31.332	19.703	0 4.939034	0.466442	25.58053	8.969924													6/1/1980	2/1/1981	7/1/1983
1/19/1979	35	5.464	611	30.911	18.819	0 4.438907	0.469934	25.81695	8.613946													7/1/1980	3/1/1981	8/1/1983
1/20/1979	35	5.464	611	30.359	19.226	0 2.567966	0.47894	16.73443	7.997378													8/1/1980	4/1/1981	9/1/1983
1/21/1979	35	5.464	611	32.499	18.324	0 2.887463	0.438824	25.69894	9.227998													9/1/1980	5/1/1981	6/1/1984
1/22/1979	35	5.464	611	33.033	19.758	0.02747 2.553209	0.484182	17.89829	9.600792													10/1/1980	10/1/1981	7/1/1984
1/23/1979	35	5.464	611	30.282	19.683	0 2.370437	0.509276	18.14467	8.587088													11/1/1980	11/1/1981	8/1/1984
1/24/1979	35	5.464	611	31.495	19.24	1.48144 2.040861	0.538267	16.34974	8.422683													12/1/1980	12/1/1981	9/1/1984
1/25/1979	35	5.464	611	30.849	20.599	0.23003 2.625281	0.472244	18.33857	8.813943													1/1/1981	1/1/1982	6/1/1985
1/26/1979	35	5.464	611	33.453	22.683	0.81625 2.337977	0.471419	13.52818	8.958149													2/1/1981	2/1/1982	7/1/1985
1/27/1979	35	5.464	611	29.926	19.662	0.06866 2.288558	0.548273	14.80168	9.071268													3/1/1981	3/1/1982	8/1/1985
1/28/1979	35	5.464	611	33.146	20.268	0.17338 1.834961	0.461287	20.82459	9.512069													4/1/1981	4/1/1982	9/1/1985
1/29/1979	35	5.464	611	31.482	22.116	0.89436 1.387491	0.461033	13.41968	9.450799													5/1/1981	5/1/1982	6/1/1986
1/30/1979	35	5.464	611	30.931	21.35	0.79308 1.763124	0.492289	19.95058	9.182311													6/1/1981	10/1/1982	7/1/1986
1/31/1979	35	5.464	611	31.531	19.831	0.37422 1.451384	0.480827	17.12666	7.153163													7/1/1981	11/1/1982	8/1/1986
2/1/1979	35	5.464	611	30.447	19.243	3.84693 1.757523	0.563054	14.6421	7.309069	33	32	35	5.464	611	32.4336	21.3156	23.0644	262.3806	2.60436	0.43303	17.7426	8/1/1981	12/1/1982	9/1/1986
2/2/1979	35	5.464	611	29.89	19.903	0.96302 2.176204	0.509777	15.95351	7.49382													9/1/1981		
2/3/1979	35	5.464	611	32.502	19.775	0 2.364039	0.454603	17.58809	8.599167													10/1/1981		7/1/1987

* Seasonal average for every grid * from daily estimates

* Eto calculated using Penman-Monteith Equation

Template developed in Excel

*

1/1/1979														Y=0.665		Wind					ETo=COL(S+
	35.679		29.1825									114622				2.98088			27.9714	11.4628	9.254358
1/2/1979	35.418		28.7285									1.15979		0.06735	21.7916				25.7667	10.4393	9.134188
1/3/1979	35.418		29.3835							0.79022		1.18744			24.7479	3.84795	6.087	0.17206		12.2432	8.812397
1/4/1979	35.605									0.76276		1.19662		0.06735			6.2897			11.634	8.826135
1/5/1979	35.523		28.475						25.6782		1.48606	107081		0.06735						11,1474	8.766054
1/6/1979	35.808		29.5165		0.23755	5.8787	2.8479		30.6555			1.33759			24.5645	3.41675	6.214		30.7563	11.6204	8.597351
1/7/1979	34.968		29.8955	4.2177	0.2421	5.61274			37.0558		2.07985	1.62069		0.06735	21.727	3.71955	5.4384		30.4256	10.6311	8.424597
1/8/1979	33.865		29.082		0.23243				39.1721			1.62903		0.06735	19.3091		4.86956		25.0975		8.620566
1/9/1979	35.63		29.884									1.62354		0.06735		3.04996			25.2991	9.00185	8.755483
1/10/1979	35.709		30.2055			5.8468		4.47939	36.1907	1.12625	2.116	1.62112		0.06735	24.5319				28.2435	11.2033	9.596768
1/11/1979	34.149	26.351			0.24641			4.39768	37.7709	129623		1.66104		0.06735			4.41599		29.8456		9.070342
1/12/1979	33.977			4.13215		5.31245	3.18689		37.1863	1.18508	1.9755	1.58029		0.06735		3.28805		0.17702	26.1101	9.28734	8.59772
1/13/1979	35.886		30.198						38.0214	1.16972		1.70724		0.06735	24.337		6.06362	0.16734		11.4573	8.918533
1/14/1979	35.733		30.6255						36.9559	120729		1.68544			24.8278		5.85243		43.2256	12.5519	6.889116
1/15/1979	35.684		30.5255						36.6018	1.18505		1.66107		0.06735		4.73769			40.4182	12.3555	9.211254
1/16/1979	35.898		30.3965							1.18434		1.70348			23.7418		5.90149		33.6089	11.4572	7.69689
1/17/1979	36.036		31.137			5.95274			34.5151	1.17663		1.61561		0.06735			5.9395		44.3522	12.7779	7.265336
1/18/1979	35.96		30.8205							1.17406		1.642		0.06735				0.15029		13.1051	9.525489
1/19/1979	35.372		30.204								2.01599	1.56554		0.06735				0.15747	42.911		10.47562
/20/1979	31.411		28.428			4.59879			39.1458		1.80023	1.53677			9.35848	3.81961			27.2454	7.09398	9.170372
1/21/1979	35.994		30.5265		0.24982				35.6846	1.13439	2.11932	1.62685		0.06735	17.2478		4.50149		27.8579	9.30555	9.816693
122/1979	35.247		30.2895		0.2469	5.6999	3.23097		37.252		2.12332	1.66346		0.06735	19.3046		4.92908		29.1492	9.90513	10.09958
¥23/1979	35.456		30.961 31.424						37.3272	1.28971		1.72099		0.06735	19.6442		5.26909	0.17345		9.5251	10.09926
124/1979	35.624				0.26117	5.81953		4.71599		1.40033		1.8281			9.69457	2.89651			24.7298	6.83446	6.97735
25/1979	36.569			4.71916		6.129	3.6		37.8578	1.36288	2.3203	1.84159		0.06735	19.8413		5.26172		29.7728	10.1444	10.23314
¥26/1979	36.579		31.936	4.73761		6.13235						1.74084		0.06735	19.0797	3.20917			29.7305	10.0014	10.27227
/27/1979	35.469		31,2545		0.25899			4.6719			2.28612	1.85102		0.06735	17.4208		4.50145	0.16469		9.45878	9.942109
V28/1979	37.26		31.091									1.74783		0.06735		2.43738		0.1772		9.28263	9.885603
/29/1979	37.286		30.7925									1.72294		0.06735	16.71		4.79944	0.18729		7.62543	9.847311
1/30/1979	37.943		29.9745					4.62463		0.99249				0.06735	21.7225		6.05433	0.18929	17.0152	9.27512	9.549043
1/31/1979 2/1/1979	42.4 42.027	22.6	32.6	4.89078		8.37282	2.74218	5.27436		0.88746		1.79859			23.9264	0.8519			9.43365	9.17517	9.767184
2/1/1979												1.66697		0.06735	26.1566		7.63468	0.18827	16.0721	10.6605	
	41,182									1.04261		1.9791		0.06735	22.4147		6.50848	0.17763	18,1196	9.72711	9.759424
2/3/1979	40.631		32.1345 31.965					5.27349		0.97773		1.76595			24,8839		7.20434	0.17671	19.577	10.6637	9.640702
2/4/1979	39.082					7.0223				1.02984		1.66679		0.06735	22.174		6.02779	0.1673	29.477	10.9593	
2/5/1979	39,592		31.7685				2.97408			0.92922	2.2548	159201		0.06735		2.34084		0.17421		9.23179	9.750362
2/6/1979	37.796		31,972							1.025		150276		0.06735	25.234		6.75779		32.6826	12.1426	10.4598
2/7/1979 2/8/1979	38.05		32.187							108523				0.06735	24.3091			0.16068		12.157	11.08628
	39.047		32.9265			7.00913				1.12934	2.2456	1.68747		0.06735	18.663		5.25926		26.9259	9.71456	11.07822
2/9/1979	37.197		31.3675							107949	2.0933	1.58639		0.06735	25.7516				28.3229	11.7299	11.65805
2/10/1979	41.969		34.5215		0.3037	8.18561			31.0163		2.53887	1.82476		0.06735	19.6344		5.97398	0.16538		9.07915	11.58168
2/11/1979	36.667		29.6885		0.23961		2.76053	4.46121	30.9257	0.85371	1.90561	1.37966		0.06735	13.2551	1.33331		0.19956	12.2165	6.27754	11.09457
2/12/1979	38.272	25.788		4.76284			3.31954	5.02118			2.57184	1.92087			23.5498	2.68816		0.16923		10.6575	10.38355
2/13/1979	37.853 37.476	25.667	31,76	4.69067						1.14747 1.0952		1.71783					4.46342	0.17105	25.2412	8.78101	10.48066

🕅 Spyder	· (Python 3.9)												-	ð	×
File Edit	Search Source Rur	n Debug (onsoles Pro	jects Tools	View Help										
	- 8 0		_	₽ I⊳						¥	e	G:\CH	\CHIRPS	-	ŧ
G:\CHIRPS	\sample_M.py												Source Console Object	ô	=
ten ten	np.py 🗙 Chrips rain	nfal.py X	CHRIPS1.py	× Extract_t	iff.py X C⊦	IIRPS_to_TS.p	y \times sample_	_М.ру 🗙				≡			
1 2 3 4 5 6 7 8 9 10 11 12 14	<pre>#Import import import geopan import os import raster import scipy. import pandas import numpy #create an e table = pd.Da #Read the po stations = gp</pre>	das as g sparse a as pd as np mpty par taFrame(ints sha	pd s sparse das data index = n pefile u	p.arange(ing GeoPa	0 ,1)) Indas the	full dire						-	Usage Here you can get help of any object by pressing Ctrl+I in front of it, either on the Editor or the Console. Help can also be shown automatically after writing a left parenthesis next to an object. You can activate this behavior in <i>Preferences</i> > <i>Help</i> . New to Spyder? Read our tutorial		
	stations['lon stations['lat	'] = sta :'] = sta	tions['X tions['Y]	9 (DC3KC	,p (CHINI S	or oound se	<i>ac con</i> (3			чэ . эпр		Help Variable Explorer Plots Files		
	#create impe Matrix = pd.D											-	Console 1/A X	Û	≡
	data_arra	os.lista -4:] == rasteri y = data y_sparse les[:-4 ta] = da	<pre>ir(r'C:\{ '.tif':/ o.open(r set.read = sparse] ta_array</pre>	Users\moti Arithmetic (C:\Users) (1) e.coo_matr _sparse.to	ig\Desktop Error motig\De≦ rix(data_a parray().t	>\ <i>CHIRPS\d</i> :ktop\CHIF urray, sha :olist()	Thirps rain PPS\Chirps PPe = (100,	fall'): rainfal					<pre>Python 3.9.7 (default, Sep 16 2021, 16:59:28) [MSC v.1916 64 bit (AMD64)] Type "copyright", "credits" or "license" for more information. IPython 7.29.0 An enhanced Interactive Python. In [1]: runfile('G:/CHIRPS/Chrips rainfal.py', wdir='G:/CHIRPS') In [2]: runfile('G:/CHIRPS/Extract_tiff.py', wdir='G:/CHIRPS') Traceback (most recent call last):</pre>		Î
	<pre>#Iteration for index, ro station_n lon = flo lat = flo x,y = (lo row, col print('pr</pre>	w in sta aame = st aat(row[' aat(row[' m,lat) = datase	tions.itd r(row['S: lon']) lat']) t.index(;	errows(): cation_Nat])	bonding ro	w and colo	mun for	the re	lated :	х,у сог		<pre>File "G:\CHIRPS\Extract_tiff.py", line 2, in <module> import geopandas as gpd ModuleNotFoundError: No module named 'geopandas' In [3]:</module></pre>		
39		ocessing 	. + sta	.ion_name;					-			Þ	IPython console History S LSP Python: ready S conda: base (Python 3.9.7) Line 4, Col 16 ASCII CRLF	RW Me	m 53%
						Q Search		×			0			9:07 24-Dec	AM

Modeling in WetSpass

- "WetSpass" an acronym for Water and Energy Transfer between Soil, Plants and Atmosphere under quasi Steady State,
- It is a GIS-based recharge estimation model by coupling surfacesubsurface water balances (GIS) (Bate- Iaan and De Smedt, 2001)
- WetSpass is used for simulating yearly or seasonal averages of groundwater recharge, evapotranspiration (soil evaporation and transpiration also as separate outputs, runoff, and interception (O. and De Smedt, F., 2007)
- The groundwater recharge output from WetSpass is used as input for MODFLOW in a steady state or seasonal varying groundwater model
- The model has been applied satisfactorily in different areas in Belgium and in some parts of Ethiopia.
- The WetSpass model Batelaan, and its ArcView interface are freely available upon request)

Preparing input data ...

- Parameters- provided by the Model developers but need revisit to when applying outside temperate zones
 - Landuse/Landcover parameters for *Beg*a and *Kiremit*
 - Soil coefficient
 - Runoff coefficient

LandUse Win (GRID): c:\tutor\wetspass\landuse	Browse	LandUse Sum (GRID): c:\tutor\wetspass\landuse	Browse
Precipitation Win (GRID): c:\tutor\wetspass\ppt_w	Browse	Precipitation Sum (GRID): c:\tutor\wetspass\ppt_s	Browse
PET Win (GRID): c:\tutor\wetspass\pet_w	Browse	PET Sum (GRID): c:\tutor\wetspass\pet_s	Browse
WindSpeed Win (GRID): c:\tutor\wetspass\wind_w	Browse	WindSpeed Sum (GRID): c:\tutor\wetspass\wind_s	Browse
Temperature Win (GRID): c:\tutor\wetspass\tem_w	Browse	Temperature Sum(GRID): c:\tutor\wetspass\tem_s	Browse
GWDepth Win (GRID): c:\tutor\wetspass\gw_w	Browse	GWDepth Sum (GRID): c:\tutor\wetspass\gw_s	Browse
Ither Grid inputs Soil (GRID): c:\tutor\wetspass\soil Slope (GRID): c:\tutor\wetspass\slope Topography (GRID): c:\tutor\wetspass\topography	Browse Browse	Landuse Parameter (Win): [c:\tutor\wetspass\luse_param_ Landuse Parameter (Sum): [c:\tutor\wetspass\luse_param_ Soil Parameter: [c:\tutor\wetspass\soil_param.dbf	Browse Browse Browse

Model Outputs

WetSpass produces output files with results for

winter, summer and year average peri

- Grid output names start with:
- recharge
- Run-off
- Soil evaporation
- Transpiration (vegetation)
- Interception
- Total evapotranspiration

<u>Winter</u>	<u>Summer Year</u>	Explanation
• Rowinter	• Ro summer • Ro year	winter, summer and yearly R un o ff
• Etwinter	• Etsummer • Etyear	winter, summer and yearly Evapotranspiration
• Inwinter	• I n summer • Inyear	winter, summer and yearly In terception
• Tr winter	• Tr summer • Tr year	winter, summer and yearly Tr anspiration
• Sewinter	• Sesummer • Seyear	winter, summer and yearly S oil e vaporation
• Rewinter	• Re summer • Re year	winter, summer and yearly R echarge
• Erwinter	• Ersummer • Eryear	winter, summer and yearly Er ror in water

Eryear

Royeau

• Revea

66 858 - 131

520.03 - 584

289 978 ... 2 63 597 - 11 1

37.323 - 162

Thank you!

For more information visit <u>www.roadsforwater.org</u> or send an email to <u>adeligianni@metameta.nl</u>