

Strengthening Resilience through Performance Based Contracts

Dr Theuns Henning FEngNZ, IntPE, Life Member Āpōpō

www.climateadaptationplatform.com

Adaptation that will Reduce the Natural Hazard Risk

Options for Dealing with Natural Hazard Risks

AVOID - Reduce exposure

CONTROL - Mitigate physical impact

TRANSFER – Limit financial loss and aid recovery

ACCEPT - Adaptive response arrangements

Considerations:

- We treat the different magnitudes of risks differently
- Asset criticality is a key input
- Our infrastructure responses include:
 - Avoid -> relocate/retreat
 - Control -> reduce the impact
 - Transfer -> Physical, financial or contractual adaptation
 - Accept -> focus on response 'when' something happens

Source: Hugh Cowan

Consider multiple possible futures, where risk(s) change with time

Investment Priority

The Asset Owner specifies technical performance measure to deliver intended outsome e.g. road roughness Technical performance measures are developed in order to deliver customer outcome e.g. I want to travel on smooth roads.

Performance Based Contracts

- Traditional Pay for work completed
- PBC Pay for outcome

With PBC, you will get what you ask for – important to know what to ask for

3 'R's of Resilience

Framing up the PBC Contract

S

5

ш

U

0

PR

2

ш

Z

F

U

-

۵.

PBC PREPARATION

PBC CONSULTANT TO UNDERTAKE:

- Network assessment

- Apply road classification and criticality

- Determine the appropriate design standards

- Confirm appropriate levels for performance measures (KPIs)

- Undertake concept design for road and drainage improvements

- Tender Documents

CONTRACT TERM

INITIAL CAPITAL INVESTMENT (GETTING THE NETWORK TO APPROPRIATE STANDARD)

CONTRACTORS TO:

- Planning improvement and construction as per design expectations

- Undertake the detail design as per concept designs provided

- Build additional / new roads

- Enhance resilience through adaptation measures (e.g. slope stability, drainage etc.)

PERFORMANCE BASED MAINTENANCE AND OPERATIONAL COMPONENT CONTRACTORS TO:

- Maintain the M&O specifies standards
- Robustness performance to required target

MAINTAINING RESILIENCE ROBUSTNESS

- Cross fall
- Clear drainage

READINESS

- Spare capacity
- Emergency plan (evidence of readiness)

RESPONSE

- Restoring access
- Restore drainage
- Slip clearing

YEAR | TO 2 (3)

Risk Sharing Arrangements for PBC

Linking Design/Risk Thresholds with Physical

Benchmarks

- Specifying a return period for events will be very difficult to apply as it is difficult to relate a return period to actual damage a specific event may cause
- The peak flow is directly related to a return period

 > record the actual peak flow that is then related
 back to the performance specifications.
- Risk or hazard related Key Performance Measures should, therefore, be related to the actual measurement of key parameters such as:
 - Temperature;
 - Rainfall;
 - Peak flow at critical locations ; and,
 - Seismic activity as recorded by seismological stations.

Road Classification and Criticality

Route/Road Criticality

Criticality Level:	Critical Level 0	Criticality Level 1	Criticality Level 2
Description:	A local route or section of the road whose failure would have a minor local economic or social impact, or plays a minor role in access to lifeline/ essential services.	A local route or section of the road where failure would have a serious local economic or social impact, or is a locally important lifeline route, ensuring access or continuity of supply of essential services during an unforeseen event.	A major route or section of the road whose failure would have a significant economic or social impact to more than one region, or is a regionally significant lifeline route, ensuring access or continuity of supply of essential services during an unforeseen event.
Further criteria:	 Low traffic volumes Low freight volumes No significant lifeline utilities or essential services, low socio impact. 	 Feeds locally significant emergency services, hospitals, lifeline utilities etc 	 Feeds regionally significant emergency services, hospitals, lifeline utilities etc
Design and operation/maintenan ce requirements	- Design/operate/maintain pavements to appropriate functional classification. No additional resilience requirements	Design/operate/maintain pavements to appropriate functional classification. Design/operate/maintain to moderate level for resilience: drainage, bridges, as well as readiness/response	Design and operate/ maintain to highest relevant standards for all elements of both operations and resilience

Understanding the Adaptation Strategies

ROAD PAVEMENT

PBC Response to Climate Impacts

Seasonal and annual average rainfall	 Impact on soil moisture levels, affecting the structural integrity of roads, bridges and tunnels Impact of standing water on the road base ultimately leading to increased pavement deterioration Risk of floods from runoff, landslides, slope failures and damage to roads if changes occur in the precipitation pattern 	 Focus O&M strategy on preventative measures and preservation treatments Elevate the road formation(including pavement structure) above estimated flood/inundation level for new road construction. Increase size and number of hydraulic structures Improve sub-surface drainage Enhance slope stability and erosion control (including soil bioengineering applications) to prevent sheet erosion, scour ,landslides, rock falls.
Higher maximum temperature and a higher number of consecutive hot days (heat waves)	 Impact on pavement integrity, e.g. softening of asphalt layers, traffic-related rutting, embrittlement (cracking), migration of liquid asphalt, buckling and cracking of concrete slabs, retaining structures etc, Thawing of permafrost soils resulting in subsiding structures and roads Thermal expansion in bridge expansion joints and paved surfaces Impact on landscaping – vegetation/forest die-outs Temperature breaks soil cohesion with increased dust volume which causes adverse health impacts and traffic accidents 	 Modify design assumptions and parameters for the use of bituminous binders and other materials.; Allow for more intensive maintenance and mitigation measures on the existing road network Allow for increased fire hazard in vegetation/forest management measures Apply appropriate dust palliative/control measures , including sealing of gravel and earth roads

PBC OPM & KPIs

Component	Desired Outcome	O&M Measures (Current Specs in Sample Specification)
Embankments	Stable in all weather conditions Only minor slips Prevention of erosion	No more than one minor slip in 1000m ; No gully erosion; (minor rills may occur but need to be levelled and turfed within a given time)
Bridge Structures	To be fully operational to design standards Structural Hydraulic	No debris Limit defects as per condition KPIs
Bridge abutments/scour protection	Free of debris Free of cementation build-up Stable abutments and river training works(riprap, gabions, walls)	Free of debris Free of cementation build-up
Sub pavements - cut- off drains	Sufficiently draining subsurface moisture Open flow	Sufficiently draining subsurface moisture Open flow
Slopes (Fill)	Erosion free Stable –no slips Prevent undercutting/toe cutting	Erosion free Stable –no slips Prevent undercutting
Corridor Vegetation Control	Rainfall - free water flow Droughts – prevent a fire hazard High winds – prevent lying debris, toppling trees	Grass cutting from safety and free draining perspective use current PBC specifications) Use drought resistance plants where appropriate –prevent overgrowing (fire hazards), Trees to be well-cleared road roadway.

Example of Performance Measure for Bridges

	Earthquake severity		
	Minor earthquake (as 5.1.2(b)) Return period factor = $R_u/4$	Design level earthquake (as 5.1.2(a)) Return period factor = R_u (ULS event)	Major earthquake (as 5.1.2(c)) Return period factor = 1. 5 <i>R</i> _u
Post-earthquake function - immediate	No disruption to traffic	Usable by emergency traffic	Usable by emergency traffic after temporary repair
Post-earthquake function – after reinstatement	Minimal reinstatement necessary to cater for all design-level actions	Feasible to reinstate to cater for all design-level actions, including repeat design- level earthquake	Capable of permanent repair, but possibly with reduced load capacity
Acceptable damage	Damage minor	Damage possible; temporary	Damage may be extensive;
		repair may be required	collapse prevented

be those that apply to a major earthquake event.

Resilience into PBC Principles

- 1. Resilience is affordable -> target low hanging fruit
- 2. The **PBC could become a vehicle for significant resilient gains** by altering its structure slightly. For example, opportunities to modify these contracts which incentivize disaster response activities will greatly enhance the effectiveness of response activities following major disasters
- 3. Points to Remember:
 - a) Investment decisions must balance an array of investment criteria (network objectives) with affordability and long-term sustainability of the strategy
 - **b) Risk transfer** needs careful considerations -> risk should be carried by party who has most control of managing the risk
 - c) Blanket risk transfer could be costly
 - d) Clear and sensible **KPI and OPM vital** "you will get what you ask for"
 - e) This about the "**blind spots**" and how to deal with them in collaboration

CLIMATE ADAPTATION PLATFORM

Home About CAP -

Research Papers 👻

Case Studies -

Blog & Articles -

Events Q

Questions