Bioengineering Bioengineering is a subset of green infrastructure that uses vegetation (trees, shrubs, grasses) to serve engineering functions – combined with civil engineering measures. Bioengineering helps to reduce soil/slope instability and erosion, increases the slope's factor of safety, is versatile in its application and cost-effective. ## **Key Points** - Integrate bioengineering systematically into rural road designs, especially in flood-prone, erosion-prone, and hilly areas. - Tailor the different functions of bioengineering to the specific location. - At sensitive / dangerous areas, strategically combine bioengineering with grey infrastructure for optimal impact of both. - Consider bioengineering as a Building Back Better option when the initially employed stabilization method failed or did not perform - Promote co-benefits. ## Specific guidance: | Engineering function | Bio-engineering measures | Civil engineering measures | |---|--|---| | Catch: Stop material from falling or sliding down a slope | Contour lining of grasses, brush layers Live check dam Stems of shrubs and bamboo | Check dams Catch walls Jute netting | | Armour: Protect the surface from erosion | Storeys of mixed plants providing complete cover Grass carpet of clumping or spreading grass with dense and fibrous roots Use green soil bags | - Revetment wall - Stone pitching | | Reinforce: hold particles together and reduce the risk of shallow-seated movement | Grasses, shrubs, and trees that are densely rooting Most vegetation structures | - Soil nailing - Reinforcing earth | | Anchor: reduce risk of deeper-seated movement | Trees and shrubs that are
deeply-rooting with long string
roots | - Rock anchors by bolting | | Support: hold material on the slope | Large trees and bamboos having deep and dense root system | - Retaining walls - Prop walls | | Reduce: reduce
material and water
movement | Strong, numerous, and flexible stems Many strong, fibrous roots | - Check dams - Catch walls | | Drain: remove excess water | Down slope and diagonal vegetation lines Angled fascines | - Surface drains - French drains | Table 1. Bioengineering function: Bioengineering systems and civil engineering systems (based on Developing Bio-engineering Capacity for the Local Government Engineering Department Operations in the Chattogram Hill Tracts, Bangladesh, ADB) ## Spring protection - In hilly areas springs and seeps are opened up with road development. This can cause the 'emptying' of local aquifer systems - We need to intervene at the new spring outlet and capture and protect the spring - We need to intervene in the spring shed and enhance recharge of the spring